首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cells upon stimulation through high affinity IgE receptors massively release inflammatory mediators by the fusion of specialized secretory granules (related to lysosomes) with the plasma membrane. Using the RBL-2H3 rat mast cell line, we investigated whether granule secretion involves components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery. Several isoforms of each family of SNARE proteins were expressed. Among those, synaptosome-associated protein of 23 kDa (SNAP23) was central in SNARE complex formation. Within the syntaxin family, syntaxin 4 interacted with SNAP23 and all vesicle-associated membrane proteins (VAMPs) examined, except tetanus neurotoxin insensitive VAMP (TI-VAMP). Overexpression of syntaxin 4, but not of syntaxin 2 nor syntaxin 3, caused inhibition of FcepsilonRI-dependent exocytosis. Four VAMP proteins, i.e., VAMP2, cellubrevin, TI-VAMP, and VAMP8, were present on intracellular membrane structures, with VAMP8 residing mainly on mediator-containing secretory granules. We suggest that syntaxin 4, SNAP23, and VAMP8 may be involved in regulation of mast cell exocytosis. Furthermore, these results are the first demonstration that the nonneuronal VAMP8 isoform, originally localized on early endosomes, is present in a regulated secretory compartment.  相似文献   

2.
The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.  相似文献   

3.
The Sec1p-like/Munc18 (SM) protein Munc18a binds to the neuronal t-SNARE Syntaxin1A and inhibits SNARE complex assembly. Tomosyn, a cytosolic Syntaxin1A-binding protein, is thought to regulate the interaction between Syntaxin1A and Munc18a, thus acting as a positive regulator of SNARE assembly. In the present study we have investigated the interaction between b-Tomosyn and the adipocyte SNARE complex involving Syntaxin4/SNAP23/VAMP-2 and the SM protein Munc18c, in vitro, and the potential involvement of Tomosyn in regulating the translocation of GLUT4 containing vesicles, in vivo. Tomosyn formed a high affinity ternary complex with Syntaxin4 and SNAP23 that was competitively inhibited by VAMP-2. Using a yeast two-hybrid assay we demonstrate that the VAMP-2-like domain in Tomosyn facilitates the interaction with Syntaxin4. Overexpression of Tomosyn in 3T3-L1 adipocytes inhibited the translocation of green fluorescent protein-GLUT4 to the plasma membrane. The SM protein Munc18c was shown to interact with the Syntaxin4 monomer, Syntaxin4 containing SNARE complexes, and the Syntaxin4/Tomosyn complex. These data suggest that Tomosyn and Munc18c operate at a similar stage of the Syntaxin4 SNARE assembly cycle, which likely primes Syntaxin4 for entry into the ternary SNARE complex.  相似文献   

4.
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N‐ethylmaleimide‐sensitive fusion protein‐attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t‐SNARE (target SNARE) proteins, syntaxin 2 and SNAP‐23 (N‐ethylmaleimide‐sensitive factor‐attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle‐associated membrane proteins) in rat lung and alveolar type II cells. VAMP‐2, ?3 and ?8 are shown in type II cells at both mRNA and protein levels. VAMP‐2 and ?8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP‐2 was co‐localized with the LB marker protein, LB‐180. Functionally, the cytoplasmic domain of VAMP‐2, but not VAMP‐8 inhibited surfactant secretion in type II cells. We suggest that VAMP‐2 is the v‐SNARE (vesicle SNARE) involved in regulated surfactant secretion.  相似文献   

5.
Axonal growth and guidance rely on correct growth cone responses to guidance cues, both in the central nervous system (CNS) and in the periphery. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the cross‐talk mechanisms between guidance and membrane dynamics and turnover in the axon. Our studies have shown that Netrin‐1/deleted in colorectal cancer signaling triggers exocytosis through the SNARE Syntaxin‐1 (STX‐1) during the formation of commissural pathways. However, limited in vivo evidence is available about the role of SNARE proteins in motor axonal guidance. Here we show that loss‐of‐function of SNARE complex members results in motor axon guidance defects in fly and chick embryos. Knock‐down of Syntaxin‐1, VAMP‐2, and SNAP‐25 leads to abnormalities in the motor axon routes out of the CNS. Our data point to an evolutionarily conserved role of the SNARE complex proteins in motor axon guidance, thereby pinpointing an important function of SNARE proteins in axonal navigation in vivo . © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 963–974, 2017  相似文献   

6.
In the developing brain, the polarity of neural progenitor cells, termed radial glial cells (RGCs), is important for neurogenesis. Intercellular adhesions, termed apical junctional complexes (AJCs), at the apical surface between RGCs are necessary for cell polarization. However, the mechanism by which AJCs are established remains unclear. Here, we show that a SNARE complex composed of SNAP23, VAMP8, and Syntaxin1B has crucial roles in AJC formation and RGC polarization. Central nervous system (CNS)–specific ablation of SNAP23 (NcKO) results in mice with severe hypoplasia of the neocortex and no hippocampus or cerebellum. In the developing NcKO brain, RGCs lose their polarity following the disruption of AJCs and exhibit reduced proliferation, increased differentiation, and increased apoptosis. SNAP23 and its partner SNAREs, VAMP8 and Syntaxin1B, are important for the localization of an AJC protein, N-cadherin, to the apical plasma membrane of RGCs. Altogether, SNARE-mediated localization of N-cadherin is essential for AJC formation and RGC polarization during brain development.  相似文献   

7.
Endothelial exocytosis regulates vascular thrombosis and inflammation. The trafficking and release of endothelial vesicles is mediated by SNARE (Soluble NSF Attachment protein REceptors) molecules, but the exact identity of endothelial SNAREs has been unclear. Three SNARE molecules form a ternary complex, including isoforms of the syntaxin (STX), vesicle-associated membrane protein (VAMP), and synaptosomal-associated protein (SNAP) families. We now identify SNAP23 as the predominant endothelial SNAP isoform that mediates endothelial exocytosis of von Willebrand Factor (VWF). SNAP23 was localized to the plasma membrane. Knockdown of SNAP23 decreased endothelial exocytosis, suggesting it is important for endothelial exocytosis. SNAP23 interacted with the endothelial exocytic machinery, and formed complexes with other known endothelial SNARE molecules. Taken together, these data suggest that SNAP23 is a key component of the endothelial SNARE machinery that mediates endothelial exocytosis.  相似文献   

8.
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.  相似文献   

9.
Suzuki K  Verma IM 《Cell》2008,134(3):485-495
Mast cells are known to play a pivotal role in allergic diseases. Cross-linking of the high-affinity receptor for IgE (FcepsilonRI) leads to degranulation and allergic inflammation; however, the regulatory mechanisms of IgE-dependent exocytosis remain unknown. We show here that IkappaB kinase (IKK) 2 in mast cells plays critical roles in IgE-mediated anaphylaxis in vivo, and IgE-mediated degranulation in vitro, in an NF-kB-independent manner. Upon FcvarepsilonRI stimulation, IKK2 phosphorylates SNAP-23, the target membrane soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor (SNARE), and ectopic expression of a phospho-mimetic mutant of SNAP-23 partially rescued the impaired IgE-mediated degranulation in IKK2-deficient mast cells. These results suggest that IKK2 phosphorylation of SNAP-23 leads to degranulation and anaphylactic reactions. While this reaction is NF-kB-independent, we additionally show that IKK2 also regulates late-phase allergic reactions promoted by the release of proinflammatory cytokines in an NF-kB-dependent manner. The findings suggest that IKK2 is a central player in allergic reactions.  相似文献   

10.
Syntaxin 7 is a mammalian target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane transport between late endosomes and lysosomes. The aim of the present study was to use immunoaffinity techniques to identify proteins that interact with Syntaxin 7. We reasoned that this would be facilitated by the use of cells producing high levels of Syntaxin 7. Screening of a large number of tissues and cell lines revealed that Syntaxin 7 is expressed at very high levels in B16 melanoma cells. Moreover, the expression of Syntaxin 7 increased in these cells as they underwent melanogenesis. From a large scale Syntaxin 7 immunoprecipitation, we have identified six polypeptides using a combination of electrospray mass spectrometry and immunoblotting. These polypeptides corresponded to Syntaxin 7, Syntaxin 6, mouse Vps10p tail interactor 1b (mVti1b), alpha-synaptosome-associated protein (SNAP), vesicle-associated membrane protein (VAMP)8, VAMP7, and the protein phosphatase 1M regulatory subunit. We also observed partial colocalization between Syntaxin 6 and Syntaxin 7, between Syntaxin 6 and mVti1b, but not between Syntaxin 6 and the early endosomal t-SNARE Syntaxin 13. Based on these and data reported previously, we propose that Syntaxin 7/mVti1b/Syntaxin 6 may form discrete SNARE complexes with either VAMP7 or VAMP8 to regulate fusion events within the late endosomal pathway and that these events may play a critical role in melanogenesis.  相似文献   

11.
Mast cell exocytosis, which includes compound degranulation and vesicle-associated piecemeal degranulation, requires multiple Q- and R- SNAREs. It is not clear how these SNAREs pair to form functional trans-SNARE complexes and how these trans-SNARE complexes are selectively regulated for fusion. Here we undertake a comprehensive examination of the capacity of two Q-SNARE subcomplexes (syntaxin3/SNAP-23 and syntaxin4/SNAP-23) to form fusogenic trans-SNARE complexes with each of the four granule-borne R-SNAREs (VAMP2, 3, 7, 8). We report the identification of at least six distinct trans-SNARE complexes under enhanced tethering conditions: i) VAMP2/syntaxin3/SNAP-23, ii) VAMP2/syntaxin4/SNAP-23, iii) VAMP3/syntaxin3/SNAP-23, iv) VAMP3/syntaxin4/SNAP-23, v) VAMP8/syntaxin3/SNAP-23, and vi) VAMP8/syntaxin4/SNAP-23. We show for the first time that Munc18a operates synergistically with SNAP-23-based non-neuronal SNARE complexes (i to iv) in lipid mixing, in contrast to Munc18b and c, which exhibit no positive effect on any SNARE combination tested. Pre-incubation with Munc18a renders the SNARE-dependent fusion reactions insensitive to the otherwise inhibitory R-SNARE cytoplasmic domains, suggesting a protective role of Munc18a for its cognate SNAREs. Our findings substantiate the recently discovered but unexpected requirement for Munc18a in mast cell exocytosis, and implicate post-translational modifications in Munc18b/c activation.  相似文献   

12.
SNARE proteins are required for intracellular membrane fusion. In the neuron, the plasma membrane SNAREs syntaxin 1a and SNAP25 bind to VAMP2 found on neurotransmitter-containing vesicles. These three proteins contain "SNARE regions" that mediate their association into stable tetrameric coiled-coil structures. Syntaxin 1a contributes one such region, designated H3, and SNAP25 contributes two SNARE regions to the fusogenic complex with VAMP2. Syntaxin 1a H3 (syn1aH3) and SNAP25 can form a stable assembly, which can then be bound by VAMP2 to form the full SNARE complex. Here we show that syn1aH3 can also form a stable but kinetically trapped complex with the N-terminal SNARE region of SNAP25 (S25N). The crystal structure of this complex reveals an extended parallel four-helix bundle similar to that of the core SNARE and the syn1aH3-SNAP25 complexes. The inherent ability of syn1aH3 and S25N to associate stably in vitro implies that the intracellular fusion machinery must prevent formation of, or remove, any non-productive complexes. Comparison with the syn1aH3-SNAP25 complex suggests that the linkage of the N- and C-terminal SNAP25 SNARE regions is kinetically advantageous in preventing formation of the non-productive syn1aH3-S25N complex. We also demonstrate that the syn1aH3-S25N complex can be disassembled by alpha-SNAP and N-ethylmaleimide-sensitive factor.  相似文献   

13.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca2+-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca2+-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

14.
The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.  相似文献   

15.
Autophagy is a degradative pathway in which cytosolic material is enwrapped within double membrane vesicles, so-called autophagosomes, and delivered to lytic organelles. SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are key to drive membrane fusion of the autophagosome and the lytic organelles, called lysosomes in higher eukaryotes or vacuoles in plants and yeast. Therefore, the identification of functional SNARE complexes is central for understanding fusion processes and their regulation. The SNARE proteins Syntaxin 17, SNAP29 and Vamp7/VAMP8 are responsible for the fusion of autophagosomes with lysosomes in higher eukaryotes. Recent studies reported that the R-SNARE Ykt6 is an additional SNARE protein involved in autophagosome-lytic organelle fusion in yeast, Drosophila, and mammals. These current findings point to an evolutionarily conserved role of Ykt6 in autophagosome-related fusion events. Here, we briefly summarize the principal mechanisms of autophagosome-lytic organelle fusion, with a special focus on Ykt6 to highlight some intrinsic features of this unusual SNARE protein.  相似文献   

16.
Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1–matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide–sensitive factor–activating protein receptor (SNARE)–mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.  相似文献   

17.
The botulinum neurotoxin light chain (BoNT-LC) is a zinc-dependent metalloprotease that cleaves neuronal SNARE proteins such as SNAP-25, VAMP2, and Syntaxin1. This cleavage interferes with the neurotransmitter release of peripheral neurons and results in flaccid paralysis. SNAP, VAMP, and Syntaxin are representative of large families of proteins that mediate most membrane fusion reactions, as well as both neuronal and non-neuronal exocytotic events in eukaryotic cells. Neuron-specific SNARE proteins, which are target substrates of BoNT, have been well studied; however, it is unclear whether other SNARE proteins are also proteolyzed by BoNT. Herein, we define the substrate specificity of BoNT-LC/B, /D, and /F towards recombinant human VAMP family proteins. We demonstrate that LC/B, /D, and /F are able to cleave VAMP1, 2, and 3, but no other VAMP family proteins. Kinetic analysis revealed that all LC have higher affinity and catalytic activity for the non-neuronal SNARE isoform VAMP3 than for the neuronal VAMP1 and 2 isoforms. LC/D in particular exhibited extremely low catalytic activity towards VAMP1 relative to other interactions, which we determined through point mutation analysis to be a result of the Ile present at residue 48 of VAMP1. We also identified the VAMP3 cleavage sites to be at the Gln 59-Phe 60 (LC/B), Lys 42-Leu 43 (LC/D), and Gln 41-Lys 42 (LC/F) peptide bonds, which correspond to those of VAMP1 or 2. Understanding the substrate specificity and kinetic characteristics of BoNT towards human SNARE proteins may aid in the development of novel therapeutic uses for BoNT.  相似文献   

18.
The role of SNAREs in mammalian constitutive secretion remains poorly defined. To address this, we have developed a novel flow cytometry‐based assay for measuring constitutive secretion and have performed a targeted SNARE and Sec1/Munc18 (SM) protein‐specific siRNA screen (38 SNAREs, 4 SNARE‐like proteins and 7 SM proteins). We have identified the endoplasmic reticulum (ER)/Golgi SNAREs syntaxin 5, syntaxin 17, syntaxin 18, GS27, SLT1, Sec20, Sec22b, Ykt6 and the SM protein Sly1, along with the post‐Golgi SNAREs SNAP‐29 and syntaxin 19, as being required for constitutive secretion. Depletion of SNAP‐29 or syntaxin 19 causes a decrease in the number of fusion events at the cell surface and in SNAP‐29‐depleted cells causes an increase in the number of docked vesicles at the plasma membrane as determined by total internal reflection fluorescence (TIRF) microscopy. Analysis of syntaxin 19‐interacting partners by mass spectrometry indicates that syntaxin 19 can form SNARE complexes with SNAP‐23, SNAP‐25, SNAP‐29, VAMP3 and VAMP8, supporting its role in Golgi to plasma membrane transport or fusion. Surprisingly, we have failed to detect any requirement for a post‐Golgi‐specific R‐SNARE in this process.  相似文献   

19.
Pombo I  Rivera J  Blank U 《FEBS letters》2003,550(1-3):144-148
Exocytosis of mast cell granules requires a vesicular- and plasma membrane-associated fusion machinery. We examined the distribution of SNARE membrane fusion and Munc18 accessory proteins in lipid rafts of RBL mast cells. SNAREs were found either excluded (syntaxin2), equally distributed between raft and non-raft fractions (syntaxin4, VAMP-8, VAMP-2), or selectively enriched in rafts (syntaxin3, SNAP-23). Syntaxin4-binding Munc18-3 was absent, whereas small amounts of the syntaxin3-interacting partner Munc18-2 consistently distributed into rafts. Cognate SNARE complexes of syntaxin3 with SNAP-23 and VAMP-8 were enriched in rafts, whereas Munc18-2/syntaxin3 complexes were excluded. This demonstrates a spatial separation between these two types of complexes and suggests that Munc18-2 acts in a step different from SNARE complex formation and fusion.  相似文献   

20.

Background

Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes.

Methodology/Principal Findings

Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex.

Conclusion/Significance

Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号