首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars   总被引:7,自引:0,他引:7  
We investigated the CpG methylation status of the sequence CCGG in the rice genome by using methylation-sensitive AFLP and subsequent Southern analyses with the isolated AFLP fragments as probes. CpGs located in single- or low-copy-sequence regions could be grouped into two classes on the basis of their methylation status: methylation status at the class 1 CpG sites was conserved among genetically diverse rice cultivars, whereas cultivar-specific differential methylation was frequently detected among the cultivars at the class 2 CpG sites. The frequency of occurrence of methylation polymorphism between a pair of cultivars was not related to the genetic distance between the two. Through mapping, five class 2 CpG sites were localized on different chromosomes and were not clustered together in the genome. Segregation analysis of the cultivar-specific methylations with their target sites indicated that the differential methylation was stably inherited in a Mendelian fashion over 6 generations, although alterations in the methylation status at the class 2 CpG sites were observed with a low frequency.  相似文献   

2.
    
We conducted genome‐wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3‐binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3‐associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.  相似文献   

3.
4.
         下载免费PDF全文
Argonaute (AGO) family proteins are conserved key components of small RNA‐induced silencing pathways. In the RNA‐directed DNA methylation (RdDM) pathway in Arabidopsis, AGO6 is generally considered to be redundant with AGO4. In this report, our comprehensive, genomewide analyses of AGO4‐ and AGO6‐dependent DNA methylation revealed that redundancy is unexpectedly negligible in the genetic interactions between AGO4 and AGO6. Immunofluorescence revealed that AGO4 and AGO6 differ in their subnuclear co‐localization with RNA polymerases required for RdDM. Pol II and AGO6 are absent from perinucleolar foci, where Pol V and AGO4 are co‐localized. In the nucleoplasm, AGO4 displays a strong co‐localization with Pol II, whereas AGO6 co‐localizes with Pol V. These patterns suggest that RdDM is mediated by distinct, spatially regulated combinations of AGO proteins and RNA polymerases. Consistently, Pol II physically interacts with AGO4 but not AGO6, and the levels of Pol V‐dependent scaffold RNAs and Pol V chromatin occupancy are strongly correlated with AGO6 but not AGO4. Our results suggest that AGO4 and AGO6 mainly act sequentially in mediating small RNA‐directed DNA methylation.  相似文献   

5.
    

Background

Telomeres are tandem repeats of TTAGGG at the end of eukaryotic chromosomes that play a key role in preventing chromosomal instability. The aim of the present study is to determine telomere length using fluorescence in situ hybridisation (FISH) on cytological specimens.

Methods

Aspiration samples (n = 41) were smeared on glass slides and used for FISH.

Results

Telomere signal intensity was significantly lower in positive cases (cases with malignancy, n = 25) as compared to negative cases (cases without malignancy, n = 16), and the same was observed for centromere intensity. The difference in DAPI intensity was not statistically significant. The ratio of telomere to centromere intensity did not show a significant difference between positive and negative cases. There was no statistical difference in the signal intensities of aspiration samples from ascites or pleural effusion (n = 23) and endoscopic ultrasound‐guided FNA samples from the pancreas (n = 18).

Conclusions

The present study revealed that telomere length can be used as an indicator to distinguish malignant and benign cells in cytological specimens. This novel approach may help improve diagnosis for cancer patients.  相似文献   

6.
非编码RNA是一类没有开放阅读框、不能翻译成为蛋自质的RNA分子。在哺乳动物中,它们主要是指微小RNA、小干扰RNA、PIWI互作RNA和其他一些反义转录本等。它们在生物体内广泛存在,通过RNA干扰、基因沉默、基因印迹和DNA甲基化等机制调控着基因的表达。非编码RNA增加了真核细胞调控网络的复杂性,也为科学地解释一些现象提供了新的途径。  相似文献   

7.
    
Proteins belonging to the enhancer of RNA interference‐1 subfamily of 3′–5′ exoribonucleases participate in divergent RNA pathways. They degrade small interfering RNAs (siRNAs), thus suppressing RNA interference, and are involved in the maturation of ribosomal RNAs and the degradation of histone messenger RNAs (mRNAs). Here, we report evidence for the role of the plant homologue of these proteins, which we termed ENHANCED RNA INTERFERENCE‐1‐LIKE‐1 (ERIL1), in chloroplast function. In vitro assays with AtERIL1 proved that the conserved 3′–5′ exonuclease activity is shared among all homologues studied. Confocal microscopy revealed that ERL1, a nucleus‐encoded protein, is targeted to the chloroplast. To gain insight into its role in plants, we used Nicotiana benthamiana and Arabidopsis thaliana plants that constitutively overexpress or suppress ERIL1. In the mutant lines of both species we observed malfunctions in photosynthetic ability. Molecular analysis showed that ERIL1 participates in the processing of chloroplastic ribosomal RNAs (rRNAs). Lastly, our results suggest that the missexpression of ERIL1 may have an indirect effect on the microRNA (miRNA) pathway. Altogether our data point to an additional piece of the puzzle in the complex RNA metabolism of chloroplasts.  相似文献   

8.
9.
    
Blueberry red ringspot virus (BRRSV) isolates have been investigated for genetic diversity. Nucleotide sequences of the coat protein (CP) gene of 19 isolates from Poland, Czech Republic, Slovenia and the United States were analysed. The nucleotide and amino acid sequence identity were 92–100% and 89–100%, respectively. Estimations of the distribution of synonymous and non‐synonymous changes indicated negative selection within the analysed CP gene and confirmed the genetic stability of the virus. At a capsid protein level, our results revealed BRRSV to be distinct from other, recombination‐prone pararetroviruses.  相似文献   

10.
    
Varieties resistant to powdery mildew (PM; caused by Podosphaera leucotricha) are a major component of sustainable apple production. Resistance can be achieved by knocking‐out susceptibility S‐genes to be singled out among members of the MLO (Mildew Locus O) gene family. Candidates are MLO S‐genes of phylogenetic clade V up‐regulated upon PM inoculation, such as MdMLO11 and 19 (clade V) and MdMLO18 (clade VII). We report the knock‐down through RNA interference of MdMLO11 and 19, as well as the complementation of resistance with MdMLO18 in the Arabidopsis thaliana triple mlo mutant Atmlo2/6/12. The knock‐down of MdMLO19 reduced PM disease severity by 75%, whereas the knock‐down of MdMLO11, alone or in combination with MdMLO19, did not result in any reduction or additional reduction of susceptibility compared with MdMLO19 alone. The test in A. thaliana excluded a role for MdMLO18 in PM susceptibility. Cell wall appositions (papillae) were present in both PM‐resistant and PM‐susceptible plants, but were larger in resistant lines. No obvious negative phenotype was observed in plants with mlo genes knocked down. Apparently, MdMLO19 plays the pivotal role in apple PM susceptibility and its knock‐down induces a very significant level of resistance.  相似文献   

11.
12.
    
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant ‘pyramids’ producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross‐resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double‐stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH‐binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt‐resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt‐resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non‐transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone.  相似文献   

13.
    
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome‐wide cytosine methylation in the sugar beet genome was studied in leaves and leaf‐derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome‐wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves.  相似文献   

14.
15.
In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite.  相似文献   

16.
    
Plant regeneration via somatic embryogenesis is time‐consuming and highly genotype‐dependent. The plant somatic embryogenesis process provokes many epigenetics changes including DNA methylation and histone modification. Recently, an elite cotton Jin668, with an extremely high regeneration ability, was developed from its maternal inbred Y668 cultivar using a Successive Regeneration Acclimation (SRA) strategy. To reveal the underlying mechanism of SRA, we carried out a genome‐wide single‐base resolution methylation analysis for nonembryogenic calluses (NECs), ECs, somatic embryos (SEs) during the somatic embryogenesis procedure and the leaves of regenerated offspring plants. Jin668 (R4) regenerated plants were CHH hypomethylated compared with the R0 regenerated plants of SRA process. The increase in CHH methylation from NEC to EC was demonstrated to be associated with the RNA‐dependent DNA methylation (RdDM) and the H3K9me2‐dependent pathway. Intriguingly, the hypomethylated CHH differentially methylated regions (DMRs) of promoter activated some hormone‐related and WUSCHEL‐related homeobox genes during the somatic embryogenesis process. Inhibiting DNA methylation using zebularine treatment in NEC increased the number of embryos. Our multi‐omics data provide new insights into the dynamics of DNA methylation during the plant tissue culture and regenerated offspring plants. This study also reveals that induced hypomethylation (SRA) may facilitate the higher plant regeneration ability and optimize maternal genetic cultivar.  相似文献   

17.
    
Host‐induced gene silencing (HIGS) is an RNA interference‐based approach in which small interfering RNAs (siRNAs) are produced in the host plant and subsequently move into the pathogen to silence pathogen genes. As a proof‐of‐concept, we generated stable transgenic lettuce plants expressing siRNAs targeting potentially vital genes of Bremia lactucae, a biotrophic oomycete that causes downy mildew, the most important disease of lettuce worldwide. Transgenic plants, expressing inverted repeats of fragments of either the Highly Abundant Message #34 (HAM34) or Cellulose Synthase (CES1) genes of B. lactucae, specifically suppressed expression of these genes, resulting in greatly reduced growth and inhibition of sporulation of B. lactucae. This demonstrates that HIGS can provide effective control of B. lactucae in lettuce; such control does not rely on ephemeral resistance conferred by major resistance genes and therefore offers new opportunities for durable control of diverse diseases in numerous crops.  相似文献   

18.
19.
20.
RNA介导的DNA甲基化作用(RNA-directed DNA Methylation,RdDM)是首次在植物中发现的基因组表观修饰现象,RdDM通过RNA-DNA序列相互作用直接导致DNA甲基化。植物中的RdDM和siRNA介导的mRNA降解现象,都是通过RNA使序列特异性基因发生沉默,它们对于植物的染色体重排、抵御病毒感染、基因表达调控和发育的许多过程起到了非常重要的作用。在植物中有很多的文献报道RdDM现象,但是对于其具体调控机理还不是很清楚。这里对RNA介导的植物DNA甲基化的基本特征进行了简要概述,主要对RdDM机理的研究进展进行了综述,其中包括RdDM过程中的DNA甲基转移酶的种类及其作用机理,DNA甲基化与染色质修饰之间的关系,以及与RdDM相关的重要蛋白质的研究等。在植物中,转录和转录后水平都可能发生RdDM,诱发基因沉默,前者常涉及靶基因启动子的甲基化,后者则牵涉到编码区的甲基化。RdDM的发生依赖于RNAi途径中相似的siRNA和酶,如DCL3、RdR2、SDE4和AGO4。植物中至少含有三类DNA甲基转移酶DRM1/2、MET1和CMT3,其作用部位是与RNA同源的DNA区域中的所有胞嘧啶,而组蛋白H3第九位赖氨酸的甲基化影响着胞嘧啶的甲基化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号