共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
泛素化修饰调控脱落酸介导的信号途径 总被引:1,自引:0,他引:1
泛素化修饰是一种重要的蛋白质翻译后修饰,通过调节蛋白的活性和稳定性等影响其功能的发挥,在真核生物的生命过程中具有非常重要的作用。泛素化修饰通过精细地调控植物激素脱落酸(abscisic acid, ABA)的合成和信号转导过程的关键因子,影响植物对ABA的响应,参与植物生长发育过程及对干旱、盐和冷胁迫等不良环境的应答。本文概述了植物中泛素化修饰的相关组分(包括泛素连接酶E3、泛素结合酶E2、26S蛋白酶体)和内膜运输相关蛋白,以及这些蛋白调控ABA合成和信号转导过程的最新研究进展,提出该研究领域需要解决的新问题,以期为相关领域的科研人员进一步了解翻译后修饰如何调控激素信号的转导途径提供参考。 相似文献
4.
Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb
Plant PJ Lafont F Lecat S Verkade P Simons K Rotin D 《The Journal of cell biology》2000,149(7):1473-1484
Nedd4 is a ubiquitin protein ligase (E3) containing a C2 domain, three or four WW domains, and a ubiquitin ligase HECT domain. We have shown previously that the C2 domain of Nedd4 is responsible for its Ca(2+)-dependent targeting to the plasma membrane, particularly the apical region of epithelial MDCK cells. To investigate this apical preference, we searched for Nedd4-C2 domain-interacting proteins that might be involved in targeting Nedd4 to the apical surface. Using immobilized Nedd4-C2 domain to trap interacting proteins from MDCK cell lysate, we isolated, in the presence of Ca(2+), a approximately 35-40-kD protein that we identified as annexin XIII using mass spectrometry. Annexin XIII has two known isoforms, a and b, that are apically localized, although XIIIa is also found in the basolateral compartment. In vitro binding and coprecipitation experiments showed that the Nedd4-C2 domain interacts with both annexin XIIIa and b in the presence of Ca(2+), and the interaction is direct and optimal at 1 microM Ca(2+). Immunofluorescence and immunogold electron microscopy revealed colocalization of Nedd4 and annexin XIIIb in apical carriers and at the apical plasma membrane. Moreover, we show that Nedd4 associates with raft lipid microdomains in a Ca(2+)-dependent manner, as determined by detergent extraction and floatation assays. These results suggest that the apical membrane localization of Nedd4 is mediated by an association of its C2 domain with the apically targeted annexin XIIIb. 相似文献
5.
Babst M 《Traffic (Copenhagen, Denmark)》2005,6(1):2-9
In eukaryotic cells, delivery of transmembrane proteins into the lumen of the lysosome for degradation is mediated by the multivesicular body pathway. The function of the ESCRT protein complexes is required for both the formation of multivesicular body lumenal vesicles and the sorting of endosomal cargo proteins into these vesicles. Recent studies have identified additional factors that seem to function as an upstream cargo retention system feeding into the ESCRT machinery, given new insights into the dynamic structure of multivesicular bodies, and identified a potential mechanism for multivesicular body vesicle formation. 相似文献
6.
Chuanxi Cai Peihui Lin Hua Zhu Jae-Kyun Ko Moonsun Hwang Tao Tan Zui Pan Irina Korichneva Jianjie Ma 《The Journal of biological chemistry》2015,290(22):13830-13839
Zinc is an essential trace element that participates in a wide range of biological functions, including wound healing. Although Zn2+ deficiency has been linked to compromised wound healing and tissue repair in human diseases, the molecular mechanisms underlying Zn2+-mediated tissue repair remain unknown. Our previous studies established that MG53, a TRIM (tripartite motif) family protein, is an essential component of the cell membrane repair machinery. Domain homology analysis revealed that MG53 contains two Zn2+-binding motifs. Here, we show that Zn2+ binding to MG53 is indispensable to assembly of the cell membrane repair machinery. Live cell imaging illustrated that Zn2+ entry from extracellular space is essential for translocation of MG53-containing vesicles to the acute membrane injury sites for formation of a repair patch. The effect of Zn2+ on membrane repair is abolished in mg53−/− muscle fibers, suggesting that MG53 functions as a potential target for Zn2+ during membrane repair. Mutagenesis studies suggested that both RING and B-box motifs of MG53 constitute Zn2+-binding domains that contribute to MG53-mediated membrane repair. Overall, this study establishes a base for Zn2+ interaction with MG53 in protection against injury to the cell membrane. 相似文献
7.
8.
Georgieva MV de Pablo Y Sanchis D Comella JX Llovera M 《Journal of neurochemistry》2011,117(3):479-493
The nerve growth factor receptor TrkA (tropomyosin-related kinase receptor) participates in the survival and differentiation of several neuronal populations. The C-terminal tail of TrkA contains a PPXY motif, the binding site of the E3 ubiquitin-ligase Nedd4-2 (neural precursor cell expressed, developmentally down-regulated 4-2). In order to analyze the role of Nedd4-2 ubiquitination on TrkA function, we generated three TrkA mutants, by introducing point mutations on conserved hydrophobic amino acids - Leu784 and Val790 switched to Ala. TrkA mutants co-localized and co-immunoprecipitated more efficiently with Nedd4-2 and consequently a strong increase in the basal multimonoubiquitination of the mutant receptors was observed. In addition, we found a decrease in TrkA abundance because of the preferential sorting of mutant receptors towards the late endosome/lysosome pathway instead of recycling back to the plasma membrane. Despite the reduction in the amount of membrane receptor caused by the C-terminal changes, TrkA mutants were able to activate signaling cascades and were even more efficient in promoting neurite outgrowth than the wild-type receptor. Our results demonstrate that the C-terminal tail hydrophobicity of TrkA regulates Nedd4-2 binding and activity and therefore controls receptor turnover. In addition, TrkA multimonoubiquitination does not interfere with the activation of signaling cascades, but rather potentiates receptor signaling leading to differentiation. 相似文献
9.
10.
11.
Bilodeau PS Winistorfer SC Kearney WR Robertson AD Piper RC 《The Journal of cell biology》2003,163(2):237-243
Ubiquitin (Ub) attachment to cell surface proteins causes their lysosomal degradation by incorporating them into lumenal membranes of multivesicular bodies (MVBs). Two yeast endosomal protein complexes have been proposed as Ub-sorting \"receptors,\" the Vps27-Hse1 complex and the ESCRT-I complex. We used NMR spectroscopy and mutagenesis studies to map the Ub-binding surface for Vps27 and Vps23. Mutations in Ub that ablate only Vps27 binding or Vps23 binding blocked the ability of Ub to serve as an MVB sorting signal, supporting the idea that both the Vps27-Hse1 and ESCRT-I complexes interact with ubiquitinated cargo. Vps27 also bound Vps23 directly via two PSDP motifs present within the Vps27 COOH terminus. Loss of Vps27-Vps23 association led to less efficient sorting into the endosomal lumen. However, sorting of vacuolar proteases or the overall biogenesis of the MVB were not grossly affected. In contrast, disrupting interaction between Vps27 and Hse1 caused severe defects in carboxy peptidase Y sorting and MVB formation. These results indicate that both Ub-sorting complexes are coupled for efficient recognition of ubiquitinated cargo. 相似文献
12.
Ricardo A. Battaglino Prakash Jha Farhath Sultana Weimin Liu Leslie R. Morse 《Journal of cellular biochemistry》2019,120(8):13321-13329
Osteoclasts employ highly specialized intracellular trafficking controls for bone resorption and organelle homeostasis. The sorting nexin Snx10 is a (Phosphatidylinositol 3-phosphate) PI3P-binding protein, which localizes to osteoclast early endosomes. Osteoclasts from humans and mice lacking functional Snx10 are severely dysfunctional. They show marked impairments in endocytosis, extracellular acidification, ruffled border formation, and bone resorption, suggesting that Snx10 regulates membrane trafficking. To better understand how SNx10 regulates vesicular formation and trafficking in osteoclasts, we set out on a search for Snx10 partners. We performed a yeast two-hybrid screening and identified FKBP12. FKBP12 is expressed in receptor activator of nuclear factor kB ligand–stimulated RAW264.7 monocytes, coimmunoprecipitates with Snx10, and colocalizes with Snx10 in osteoclasts. We also found that FKBP12, Snx10, and early endosome antigen 1 (EEA1) are present in the same subcellular fractions obtained by centrifugation in sucrose gradients, which confirms localization of FKBP12 to early endosomes. Taken together, these results indicate that Snx10 and FKBP12 are partners and suggest that Snx10 and FKBP12 are involved in the regulation of endosome/lysosome homeostasis via the synthesis. These findings may suggest novel therapeutic approaches to control bone loss by targeting essential steps in osteoclast membrane trafficking. 相似文献
13.
Apoptosis is an organised ATP‐dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti‐oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer. 相似文献
14.
15.
16.
Vinayak Vittal Mikaela D. Stewart Peter S. Brzovic Rachel E. Klevit 《The Journal of biological chemistry》2015,290(35):21244-21251
Since its discovery as a post-translational signal for protein degradation, our understanding of ubiquitin (Ub) has vastly evolved. Today, we recognize that the role of Ub signaling is expansive and encompasses diverse processes including cell division, the DNA damage response, cellular immune signaling, and even organismal development. With such a wide range of functions comes a wide range of regulatory mechanisms that control the activity of the ubiquitylation machinery. Ub attachment to substrates occurs through the sequential action of three classes of enzymes, E1s, E2s, and E3s. In humans, there are 2 E1s, ∼35 E2s, and hundreds of E3s that work to attach Ub to thousands of cellular substrates. Regulation of ubiquitylation can occur at each stage of the stepwise Ub transfer process, and substrates can also impact their own modification. Recent studies have revealed elegant mechanisms that have evolved to control the activity of the enzymes involved. In this minireview, we highlight recent discoveries that define some of the various mechanisms by which the activities of E3-Ub ligases are regulated. 相似文献
17.
Morrison E Thompson J Williamson SJ Cheetham ME Robinson PA 《Journal of neurochemistry》2011,116(3):342-349
Parkin is an ubiquitin-protein ligase mutated in Autosomal Recessive - Juvenile Parkinsonism. Here, we describe a cell-based assay to measure Parkin's ubiquitin-protein ligase activity. It relies on the ability of Parkin to recognise depolarised mitochondria and exploits a cell line where Parkin expression is inducible. In these cells, Parkin expression promotes mitophagy and accelerates cell death in response to mitochondrial depolarisers. Time-lapse imaging confirmed cell death and revealed increased perinuclear mitochondrial clustering following induction of Parkin expression in cells exposed to carbonyl cyanide m-chlorophenylhydrazone. Similar effects were not observed with α-synuclein or DJ-1, other proteins associated with the development of Parkinson's disease, confirming the specificity of the assay. We have used this assay to demonstrate that ligase-defective Parkin mutants are inactive, and cellular proteasomal activity (using the proteasomal inhibitors MG132, clasto-lactacystin β-lactone and epoxomicin) is essential for the Parkin mediated effect. As the assay is suitable for high-throughput screening, it has the potential to identify novel proteostasis compounds that stimulate the activity of Parkin mutants for therapeutic purposes, to identify modulators of kinase activities that impact on Parkin function, and to act as a functional read-out in reverse genetics screens aimed at identifying modifiers of Parkin function during mitophagy. 相似文献
18.
Maître B Angénieux C Salamero J Hanau D Fricker D Signorino F Proamer F Cazenave JP Goud B Tourne S de la Salle H 《Traffic (Copenhagen, Denmark)》2008,9(4):431-445
CD1e is a membrane-associated protein predominantly detected in the Golgi compartments of immature human dendritic cells. Without transiting through the plasma membrane, it is targeted to lysosomes (Ls) where it remains as a cleaved and soluble form and participates in the processing of glycolipidic antigens. The role of the cytoplasmic tail of CD1e in the control of its intracellular pathway was studied. Experiments with chimeric molecules demonstrated that the cytoplasmic domain determines a cellular pathway that conditions the endosomal cleavage of these molecules. Other experiments showed that the C-terminal half of the cytoplasmic tail mediates the accumulation of CD1e in Golgi compartments. The cytoplasmic domain of CD1e undergoes monoubiquitinations, and its ubiquitination profile is maintained when its N- or C-terminal half is deleted. Replacement of the eight cytoplasmic lysines by arginines results in a marked accumulation of CD1e in trans Golgi network 46+ compartments, its expression on the plasma membrane and a moderate slowing of its transport to Ls. Fusion of this mutated form with ubiquitin abolishes the accumulation of CD1e molecules in the Golgi compartments and restores the kinetics of their transport to Ls. Thus, ubiquitination of CD1e appears to trigger its exit from Golgi compartments and its transport to endosomes. This ubiquitin-dependent pathway may explain several features of the very particular intracellular traffic of CD1e in dendritic cells compared with other CD1 molecules. 相似文献
19.
《Journal of receptor and signal transduction research》2013,33(6):536-549
AbstractCancer is a major health problem in the world. The initiation and progression of cancer is due to imbalance between the programmed cell growth and death. These processes are triggered by the ubiquitin family enzymes. The ubiquitin-like proteins are responsible for the cell metabolism. Ubiquitin-dependent proteolysis by the 26s proteasome plays a crucial role in cell cycle progression as well as in tumorigenesis. In the ubiquitin proteasomal degradation pathway, ubiquitin conjugation enzyme E2A (UBE2A) binds with ubiquitin ligase RAD18, results in polyubiquitation reaction and cell cycle progression. UBE2A is an important contributing factor for the control of tumorigenesis. In the present work, the 3D model of the protein UBE2A was generated by homology modeling technique. The generated 3D structure of the UBE2A was validated, and active site was identified using standard computational protocols. The active site was subjected to structure-based virtual screening using small molecule data banks, and new molecules were identified. The ADME properties of the new ligand molecules were predicted, and the new ligands are identified as potent UBE2A antagonists for cancer therapy. 相似文献
20.
Cytokinesis, the final stage of the cell cycle, is an essential step toward the formation of two viable daughter cells. In recent years, membrane trafficking has been shown to be important for the completion of cytokinesis. Vesicles originating from both the endocytic and secretory pathways are known to be shuttled to the plasma membrane of the ingressing cleavage furrow, delivering membrane and proteins to this dynamic region. Advances in cell imaging have led to exciting new discoveries regarding vesicle movement in living cells. Recent work has revealed a significant role for membrane trafficking, as controlled by regulatory proteins, during cytokinesis in animal cells. The endocytic and secretory pathways as well as motor proteins are revealed to be essential in the delivery of vesicles to the cleavage furrow during cytokinesis. 相似文献