首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high‐phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non‐photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton‐motive force across thylakoids. Small‐angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long‐range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild‐type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro‐organization of complexes and induction of photoprotective mechanisms.  相似文献   

3.
    
Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex comprises one Gα, one Gβ, and one Gγ subunit. However, in addition to the canonical Gγ subunits (class A), plants also possess two unusual, plant‐specific classes of Gγ subunits (classes B and C) that have not yet been found in animals. These include Gγ subunits lacking the C–terminal CaaX motif (class B), which is important for membrane anchoring of the protein; the presence of such subunits gives rise to a flexible sub‐population of Gβ/γ heterodimers that are not necessarily restricted to the plasma membrane. Plants also contain class C Gγ subunits, which are twice the size of canonical Gγ subunits, with a predicted transmembrane domain and a large cysteine‐rich extracellular C–terminus. However, neither the presence of the transmembrane domain nor the membrane topology have been unequivocally demonstrated. Here, we provide compelling evidence that AGG3, a class C Gγ subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine‐rich C–terminus is extracellular.  相似文献   

4.
    
  • The EGY3 protein is a homologue of site‐2 proteases, which are intramembrane zinc metalloproteases. EGY3 itself lacks proteolytic activity due to the absence of a zinc‐binding motif. Plentiful evidence indicates that such intramembrane ‘pseudoproteases’ play significant roles in many diverse processes occurring within the cell. However, the physiological functions of EGY3, as well as its subcellular localization, remain unknown.
  • The subcellular localization of EGY3 protein was investigated using Arabidopsis thaliana protoplasts transformed with EGY3‐GFP fusion protein, and immunoblot experiments using the total leaf protein extract, as well as highly purified chloroplasts and fractions of stroma, envelope and thylakoid membrane proteins. The physiological role of EGY3 was studied using two A. thaliana mutant lines devoid of EGY3 protein. Chlorophyll a fluorescence measurement was performed and the egy3 mutant sensitivity to photoinhibition was investigated. Additionally, the abundance of thylakoid membrane complexes was established using blue native gel electrophoresis.
  • We present experimental evidence for thylakoid membrane localization of the EGY3 protein.
  • We show that egy3 mutants display increased value of the non‐photochemical quenching parameter and significantly slower recovery rate after photoinhibitory treatment. This was associated with a decrease in the level of proteases involved in photosystem II recovery, Deg1 and FtsH2/8.
  相似文献   

5.
    
Phosphatidylglycerol (PG) is the only phospholipid in the thylakoid membranes of chloroplasts of plants, and it is also found in extraplastidial membranes including mitochondria and the endoplasmic reticulum. Previous studies showed that lack of PG in the pgp1‐2 mutant of Arabidopsis deficient in phosphatidylglycerophosphate (PGP) synthase strongly affects thylakoid biogenesis and photosynthetic activity. In the present study, the gene encoding the enzyme for the second step of PG synthesis, PGP phosphatase, was isolated based on sequence similarity to the yeast GEP4 and Chlamydomonas PGPP1 genes. The Arabidopsis AtPGPP1 protein localizes to chloroplasts and harbors PGP phosphatase activity with alkaline pH optimum and divalent cation requirement. Arabidopsis pgpp1‐1 mutant plants contain reduced amounts of chlorophyll, but photosynthetic quantum yield remains unchanged. The absolute content of plastidial PG (34:4; total number of acyl carbons:number of double bonds) is reduced by about 1/3, demonstrating that AtPGPP1 is involved in the synthesis of plastidial PG. PGP 34:3, PGP 34:2 and PGP 34:1 lacking 16:1 accumulate in pgpp1‐1, indicating that the desaturation of 16:0 to 16:1 by the FAD4 desaturase in the chloroplasts only occurs after PGP dephosphorylation.  相似文献   

6.
    
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono‐ and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl‐MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl‐MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12‐oxo‐phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA‐containing galactolipids in the plant kingdom. While acyl‐MGDG was found to be ubiquitous in green tissue of plants ranging from non‐vascular plants to angiosperms, OPDA‐containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non‐oxidized and OPDA‐containing acyl‐MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl‐MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.  相似文献   

7.
    
Early seedling development in plants depends on the biogenesis of chloroplasts from proplastids, accompanied by the formation of thylakoid membranes. An Arabidopsis thaliana gene, AtTerC , whose gene product shares sequence similarity with bacterial tellurite resistance C (TerC), is shown to be involved in a critical step required for the normal organization of prothylakoids and transition into mature thylakoid stacks. The AtTerC gene encodes an integral membrane protein, which contains eight putative transmembrane helices, localized in the thylakoid of the chloroplast, as shown by localization of an AtTerC–GFP fusion product in protoplasts and by immunoblot analysis of subfractions of chloroplasts. T-DNA insertional mutation of AtTerC resulted in a pigment-deficient and seedling-lethal phenotype under normal light conditions. Transmission electron microscopic analysis revealed that mutant etioplasts had normal prolamellar bodies (PLBs), although the prothylakoids had ring-like shapes surrounding the PLBs. In addition, the ultrastructures of mutant chloroplasts lacked thylakoids, did not have grana stacks, and showed numerous globular structures of varying sizes. Also, the accumulation of thylakoid membrane proteins was severely defective in this mutant. These results suggest that the AtTerC protein plays a crucial role in prothylakoid membrane biogenesis and thylakoid formation in early chloroplast development.  相似文献   

8.
    
Thioredoxins (Trxs) regulate the activity of various chloroplastic proteins in a light‐dependent manner. Five types of Trxs function in different physiological processes in the chloroplast of Arabidopsis thaliana. Previous in vitro experiments have suggested that the f‐type Trx (Trx f) is the main redox regulator of chloroplast enzymes, including Calvin cycle enzymes. To investigate the in vivo contribution of each Trx isoform to the redox regulatory system, we first quantified the protein concentration of each Trx isoform in the chloroplast stroma. The m‐type Trx (Trx m), which consists of four isoforms, was the most abundant type. Next, we analyzed several Arabidopsis Trx‐m‐deficient mutants to elucidate the physiological role of Trx m in vivo. Deficiency of Trx m impaired plant growth and decreased the CO2 assimilation rate. We also determined the redox state of Trx target enzymes to examine their photo‐reduction, which is essential for enzyme activation. In the Trx‐m‐deficient mutants, the reduction level of fructose‐1,6‐bisphosphatase and sedoheptulose‐1,7‐bisphosphatase was lower than that in the wild type. Inconsistently with the historical view, our in vivo study suggested that Trx m plays a more important role than Trx f in the activation of Calvin cycle enzymes.  相似文献   

9.
    
Plant photosystem II (PSII) is organized into large supercomplexes with variable levels of membrane‐bound light‐harvesting proteins (LHCIIs). The largest stable form of the PSII supercomplex involves four LHCII trimers, which are specifically connected to the PSII core dimer via monomeric antenna proteins. The PSII supercomplexes can further interact in the thylakoid membrane, forming PSII megacomplexes. So far, only megacomplexes consisting of two PSII supercomplexes associated in parallel have been observed. Here we show that the forms of PSII megacomplexes can be much more variable. We performed single particle electron microscopy (EM) analysis of PSII megacomplexes isolated from Arabidopsis thaliana using clear‐native polyacrylamide gel electrophoresis. Extensive image analysis of a large data set revealed that besides the known PSII megacomplexes, there are distinct groups of megacomplexes with non‐parallel association of supercomplexes. In some of them, we have found additional LHCII trimers, which appear to stabilize the non‐parallel assemblies. We also performed EM analysis of the PSII supercomplexes on the level of whole grana membranes and successfully identified several types of megacomplexes, including those with non‐parallel supercomplexes, which strongly supports their natural origin. Our data demonstrate a remarkable ability of plant PSII to form various larger assemblies, which may control photochemical usage of absorbed light energy in plants in a changing environment.  相似文献   

10.
    
Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non‐appressed thylakoids harbor several high molecular mass pigment–protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light‐harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non‐appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment–protein complexes from all thylakoid compartments, revealed that the pigment–protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment–protein megacomplexes specifically in non‐appressed thylakoids undergoes redox‐dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.  相似文献   

11.
    
Most proteins found in the thylakoid lumen are synthesized in the cytosol with an N–terminal extension consisting of transient signals for chloroplast import and thylakoid transfer in tandem. The thylakoid‐transfer signal is required for protein sorting from the stroma to thylakoids, mainly via the cpSEC or cpTAT pathway, and is removed by the thylakoidal processing peptidase in the lumen. An Arabidopsis mutant lacking one of the thylakoidal processing peptidase homologs, Plsp1, contains plastids with anomalous thylakoids and is seedling‐lethal. Furthermore, the mutant plastids accumulate two cpSEC substrates (PsbO and PetE) and one cpTAT substrate (PsbP) as intermediate forms. These properties of plsp1‐null plastids suggest that complete maturation of lumenal proteins is a critical step for proper thylakoid assembly. Here we tested the effects of inhibition of thylakoid‐transfer signal removal on protein targeting and accumulation by examining the localization of non‐mature lumenal proteins in the Arabidopsis plsp1‐null mutant and performing a protein import assay using pea chloroplasts. In plsp1‐null plastids, the two cpSEC substrates were shown to be tightly associated with the membrane, while non‐mature PsbP was found in the stroma. The import assay revealed that inhibition of thylakoid‐transfer signal removal did not disrupt cpSEC‐ and cpTAT‐dependent translocation, but prevented release of proteins from the membrane. Interestingly, non‐mature PetE2 was quickly degraded under light, and unprocessed PsbO1 and PsbP1 were found in a 440‐kDa complex and as a monomer, respectively. These results indicate that the cpTAT pathway may be disrupted in the plsp1‐null mutant, and that there are multiple mechanisms to control unprocessed lumenal proteins in thylakoids.  相似文献   

12.
13.
    
The structure and function of photosystem II (PSII) are highly susceptible to photo‐oxidative damage induced by high‐fluence or fluctuating light. However, many of the mechanistic details of how PSII homeostasis is maintained under photoinhibitory light remain to be determined. We describe an analysis of the Arabidopsis thaliana gene At5g07020, which encodes an unannotated integral thylakoid membrane protein. Loss of the protein causes altered PSII function under high‐irradiance light, and hence it is named ‘Maintenance of PSII under High light 1’ (MPH1). The MPH1 protein co‐purifies with PSII core complexes and co‐immunoprecipitates core proteins. Consistent with a role in PSII structure, PSII complexes (supercomplexes, dimers and monomers) of the mph1 mutant are less stable in plants subjected to photoinhibitory light. Accumulation of PSII core proteins is compromised under these conditions in the presence of translational inhibitors. This is consistent with the hypothesis that the mutant has enhanced PSII protein damage rather than defective repair. These data are consistent with the distribution of the MPH1 protein in grana and stroma thylakoids, and its interaction with PSII core complexes. Taken together, these results strongly suggest a role for MPH1 in the protection and/or stabilization of PSII under high‐light stress in land plants.  相似文献   

14.
    
Trans‐generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well‐known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd‐exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd‐exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications.  相似文献   

15.
    
Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non‐nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co‐expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N‐terminal tail and the histone fold domain of non‐nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.  相似文献   

16.
    
Phospholipase C (PLC) is an enzyme that plays crucial roles in various signal transduction pathways in mammalian cells. However, the role of PLC in plant development is poorly understood. Here we report involvement of PLC2 in auxin‐mediated reproductive development in Arabidopsis. Disruption of PLC2 led to sterility, indicating a significant role for PLC2 in reproductive development. Development of both male and female gametophytes was severely perturbed in plc2 mutants. Moreover, elevated auxin levels were observed in plc2 floral tissues, suggesting that the infertility of plc2 plants may be associated with increased auxin concentrations in the reproductive organs. We show that expression levels of the auxin reporters DR5:GUS and DR5:GFP were elevated in plc2 anthers and ovules. In addition, we found that expression of the auxin biosynthetic YUCCA genes was increased in plc2 plants. We conclude that PLC2 is involved in auxin biosynthesis and signaling, thus modulating development of both male and female gametophytes in Arabidopsis.  相似文献   

17.
  总被引:1,自引:0,他引:1  
Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum (ER). Here, we showed that polyunsaturation of ER glycerolipids is required for the ER stress response. Through systematic screening of FAD mutants, we found that a mutant of FAD2 resulted in a hypersensitive response to tunicamycin, a chemical inducer of ER stress. FAD2 converts oleic acid to linoleic acid of the fatty acyl groups of ER‐synthesized phospholipids. Our functional in vivo reporter assay revealed the ER localization and distinct tissue‐specific expression patterns of FAD2. Moreover, glycerolipid profiling of both mutants and overexpressors of FAD2 under tunicamycin‐induced ER stress conditions, along with phenotypic screening of the mutants of the FAD family, suggested that the ratio of monounsaturated fatty acids to polyunsaturated fatty acids, particularly 18:1 to 18:2 species, may be an important factor in allowing the ER membrane to cope with ER stress. Therefore, our results suggest that membrane lipid polyunsaturation mediated by FAD2 is involved in ER stress tolerance in Arabidopsis.  相似文献   

18.
19.
20.
    
Phototropin (phot1) is a blue light‐activated plasma membrane‐associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non‐Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localized the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non‐invasive approach where PHOT1–GFP (P1–GFP) expression was targeted to the hypocotyl apex of the phot‐deficient mutant using the promoters of CUP‐SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1–GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1–GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 μmol m?2 sec?1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1–GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de‐phosphorylation showed that CUC3::P1–GFP and ANT::P1–GFP mis‐express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1‐mediated NPH3 de‐phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号