首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European razor shell Ensis minor (Chenu 1843) and the American E. directus (Conrad 1843) have a diploid chromosome number of 38 and remarkable differences in their karyotypes: E. minor has four metacentric, one metacentric–submetacentric, five submetacentric, one subtelocentric and eight telocentric chromosome pairs, whereas E. directus has three metacentric, two metacentric–submetacentric, six submetacentric, six subtelocentric and two telocentric pairs. Fluorescent in situ hybridisation (FISH) using a major ribosomal DNA probe located the major ribosomal genes on one submetacentric chromosome pair in both species; FISH with a 5S ribosomal DNA (5S rDNA) probe rendered one chromosomal (weak) signal for E. minor and no signal for E. directus, supporting a more dispersed organisation of 5S rDNA compared to the major ribosomal genes. The vertebrate telomeric sequence (TTAGGG) n was located on both ends of each chromosome, and no interstitial signals were detected. In this work, a comparative karyological analysis was also performed between the four Ensis species analysed revealing that the three European species studied so far, namely E. minor, E. siliqua (Linné 1758) and E. magnus Schumacher 1817 show more similarities among them than compared to the American species E. directus. In addition, clear karyotype differences were found between the morphologically similar species E. minor and E. siliqua.  相似文献   

2.
Lungworms from the genus Rhabdias are common parasites of amphibians and reptiles distributed worldwide. To assess the diversity of Rhabdias spp., we performed molecular analyses of 35 specimens sampled in different regions of Brazil. Molecular analyses were based on the internal transcribed spacer (ITS), large subunit (28S) ribosomal and the cytochrome oxidase I (COI) mitochondrial genes. DNA sequence divergence was compared among ribosomal and mitochondrial genes, analyses using the general mixed Yule‐coalescent (GMYC) method based on the COI gene were used to identify possible cryptic diversity, and phylogenetic analyses using concatenated ITS and 28S ribosomal genes were used to test the monophyly of Rhabdiasidae. We revealed five morphospecies: R. cf. stenocephala, R. breviensis, R. pseudosphaerocephala and two new species, Rhabdias sp.4 and Rhabdias sp.5. DNA sequence levels of divergence among genes ITS, 28S and COI were compared, and the efficiency of the molecular markers to identify species (ITS and COI) and lineages (COI) was tested. GMYC was assigned to 17 well‐supported clades (i.e., 17 species), and cryptic diversity was detected in the Neotropical region as evidenced by the multiple lineages in R. breviensis and R. pseudosphaerocephala. In addition, our results suggest evidence for host–parasite cophylogeny in the R. pseudosphaerocephala complex and dispersal events among their populations. Phylogenetic analyses supported the monophyly of Rhabdiasidae and improved the resolution of main clades. Rhabdias breviensis is closely related to Rhabdias cf. africanus, Rhabdias cf. stenocephala, R. pseudosphaerocephala, Rhabdias sp.4 and Rhabdias sp.5 grouping together in a main clade with Neotropical‐related species. The large geographical distribution appeared to be a phylogenetic pattern among the species of Rhabdias from the neotropics.  相似文献   

3.
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648‐bp segment near the 5′ terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5′ region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.  相似文献   

4.
We report on two new lineages of the Eumida sanguinea complex from Great Britain and describe one of them as a new species using a multilocus approach, including the mitochondrial DNA COI-5P and the nuclear markers ITS (ITS1, 5.8S rRNA and ITS2) and 28S rRNA. The molecular analysis placed Eumida mackiei sp. nov. in a monophyletic clade with 19.1% (COI), 10.1% (ITS) and 1.7% (28S) mean distance to its nearest neighbour. Molecular diagnoses were also applied to nine lineages within the E. sanguinea complex. This was complemented with morphometric data employing multivariate statistical analysis and the incorporation of statistical dissimilarities against three other described species from the complex. Eumida mackiei sp. nov. can be distinguished from E. notata and E. maia by the larger distance between the eyes and differences in morphometric proportions mainly in the dorsal and ventral cirri as well as in the prostomial appendages. E. sanguinea sensu stricto failed to produce a cluster of its own in the morphometric analysis, probably due to juvenile bias. Integrative taxonomy provided strong evidence to formally describe a new cryptic species that can now be used in biomonitoring or other relevant ecological research.  相似文献   

5.
The taxonomic status of an alga with complanate thalli, occurring in central Chile and belonging to the genus Scytosiphon, was elucidated. Morphological and molecular features demonstrated that, in addition to the known and widespread constricted S. lomentaria (Lyngb.) Link that occurs along the Chilean coast, there is a Scytosiphon with complanate thalli that occurs only in central Chile—S. gracilis Kogame. Morphological analyses of this previously unreported complanate Scytosiphon showed thalli without constrictions, coherent plurilocular sporangia without ascocysts, and phaeophycean hairs arising from cortical cells. Furthermore, sequences of the internal transcribed spacer (ITS1 and ITS2) regions of the complanate Scytosiphon were 99.8% and 100% identical to those detected in S. gracilis from Korea. ITS‐based comparative analyses showed that complanate Scytosiphon grouped in a different clade than S. lomentaria and S. tenellus Kogame from various parts of the world, including Chilean species. Moreover, molecular analyses suggest the occurrence of two distinct ITS types of S. lomentaria in northern Chile, corresponding to the Korean and Greek types. On the other hand, biochemical analyses of copper‐induced antioxidant responses in S. gracilis and S. lomentaria showed an identical increase in antioxidant enzyme activities. These results suggest that copper tolerance might be a constitutive trait in these species of Scytosiphon.  相似文献   

6.
7.
Individuals of five nominal species of Grania (Annelida: Clitellata: Enchytraeidae) were collected from locations in Sweden, Norway and France, for studies on the intraspecific variation at the Cytochrome Oxidase I (COI) locus of mitochondrial DNA and internal transcribed spacer (ITS) region of nuclear DNA. It was found that the previously described morphospecies in general contain low variation compared to the between‐species variation in both loci. In one instance, however, an individual morphologically indistinguishable from G. ovitheca was found to be deviant and instead cluster with G. postclitellochaeta both by COI and ITS. We describe this individual as a new species: G. occulta sp.n. Furthermore, phylogenetic analyses were conducted, showing a close relationship between G. variochaeta, G. occulta, G. ovitheca and G. postclitellochaeta, as well as between G. pusilla and G. maricola. Using the results from the phylogenetic analyses, we discuss the evolution of morphological characters in Scandinavian species of Grania.  相似文献   

8.
Although copepods of the genus Cyclops are among the most common and dominant plankton taxa of lakes in the northern temperate zone, their taxonomy is still unclear. We analysed an extensive array of Cyclops populations from Europe by means of molecular methods and evaluated morphological characters. Altogether, 68 populations of Cyclops species were sampled, assigned to morphospecies and sequenced for the 12S rRNA gene. Selected populations of each morphospecies were additionally sequenced for three mitochondrial (16S rRNA, cytochrome b, COI) and two nuclear genes (18S rRNA, ITS1) and analysed for micromorphological traits. Our analysis revealed fifteen lineages that can be regarded as separate species. Thirteen of these match currently accepted species, while the remaining two lineages were distinct from the other described species. Thus, their taxonomic status is open to further studies. Besides taxonomy, our study gives new insights into the ecology, distribution and phylogenetic relationships of these species. Finally, a set of morphological traits was selected to facilitate identification.  相似文献   

9.
Excirolana braziliensis is a coastal intertidal isopod with a broad distribution spanning the Atlantic and Pacific tropical and temperate coasts of the American continent. Two separate regional studies (one in Panama and one in Chile) revealed the presence of highly genetically divergent lineages, implying that this taxon constitutes a cryptic species complex. The relationships among the lineages found in these two different regions and in the rest of the distribution, however, remain unknown. To better understand the phylogeographic patterns of E. braziliensis, we conducted phylogenetic analyses of specimens from much of its entire range. We obtained DNA sequences for fragments of four mitochondrial genes (16S rDNA, 12S rDNA, COI, and Cytb) and also used publicly available sequences. We conducted maximum likelihood and Bayesian phylogenetic reconstruction methods. Phylogeographic patterns revealed the following: (1) new highly divergent lineages of E. braziliensis; (2) three instances of Atlantic–Pacific divergences, some of which appear to predate the closure of the Isthmus of Panama; (3) the distributional limit of highly divergent lineages found in Brazil coincides with the boundary between two major marine coastal provinces; (4) evidence of recent long‐distance dispersal in the Caribbean; and (5) populations in the Gulf of California have closer affinities with lineages further south in the Pacific, which contrasts with the closer affinity with the Caribbean reported for other intertidal organisms. The high levels of cryptic diversity detected also bring about challenges for the conservation of this isopod and its fragile environment, the sandy shores. Our findings underscore the importance of comprehensive geographic sampling for phylogeographic and taxonomical studies of broadly distributed putative species harboring extensive cryptic diversity.  相似文献   

10.
Two populations of Epistylis wuhanensis n. sp., a new freshwater peritrich ciliate, were isolated from different freshwater ponds located in Hubei, China. Their morphological characteristics were investigated using live observation, protargol impregnation, and scanning electron microscopy (SEM). Specimens from the two populations showed identical arrangement of the infraciliature and identical small subunit ribosomal RNA (SSU rRNA) gene and ITS1‐5.8S‐ITS2 sequences. The zooids present bell‐shaped and 90–175 × 27–54 μm in vivo. Macronucleus is variable in shape and located in the middle of cell. Pellicle is usually smooth with 139–154 and 97–105 striations above and below the trochal band, respectively. SSU rRNA gene and ITS1‐5.8S‐ITS2 sequences of E. wuhanensis n. sp. did not match any available sequences in GenBank. Phylogenetically, E. wuhanensis n. sp. clusters with the other Epistylis within the family Epistylididae, but is distinct from the major clades of Epistylis. Above all, the morphological characteristics and molecular analyses support that the present Epistylis is a new species. Expanded phylogenetic analyses of sessilids based on both SSU rRNA gene sequences and ITS1‐5.8S‐ITS2 sequences reveal that the genus Epistylis consists of Epistylis morphospecies and taxonomic revision of the genus is needed.  相似文献   

11.
Morphological identification methods do not provide reliable and meaningful species identifications for taxa where morphological differences among distinct species are either absent or overlooked (i.e., cryptic species). For example, due to the minute nature of the morphological characters used to delineate diaptomid copepod species and the apparent potential for copepod speciation to occur with little or no morphological change (i.e., morphological stasis), morphological identifications of diaptomid species may not adequately capture their true species diversity. Here, we present results from a geographic survey of mtDNA sequences from populations across the geographic ranges of four North American diaptomid species—Leptodiaptomus minutus, Skistodiaptomus pallidus, Skistodiaptomus reighardi, and Onychodiaptomus sanguineus. Shallow mitochondrial DNA sequence divergences (maximum of 1.1%) among haplotypes of L. minutus from across its geographic range suggest that current morphological identification techniques reliably identify this species. In contrast, we found large mitochondrial DNA sequence divergences (14–22%) among populations within the currently recognized morphospecies of S. pallidus, S. reighardi, and O. sanguineus. However, pairwise sequence divergences within four distinct S. pallidus clades and within populations of S. reighardi and O. sanguineus were similarly low (maximum of 1.5%) as found within L. minutus as a whole. Thus, the S. pallidus, S. reighardi, and O. sanguineus morphospecies may be considered best as cryptic species complexes. Our study therefore indicates that morphological identifications, while sufficient for some species, likely underestimate the true species diversity of diaptomid copepods. As such, we stress the need for extensive taxonomic revision that integrates genetic, morphological, reproductive, and ecological analyses of this diverse and important group of freshwater zooplankton. Furthermore, we believe an extensive taxonomic revision will shed important insight into major questions regarding the roles of geography, phylogeny, and habitat on the frequency of cryptic species on earth. Handling editor: S. I. Dodson  相似文献   

12.
The Iberian Peninsula is a region with a high endemicity of species of the terrestrial slug subgenus Mesarion. Many of these species have been described mainly on subtle differences in their proximal genitalia. It therefore remains to be investigated 1) whether these locally diverged taxa also represent different species under a phylogenetic species concept as has been shown for other Mesarion species outside the Iberian Peninsula, and 2) how these taxa are phylogenetically related. Here, we analysed DNA sequence data of two mitochondrial (COI and 16S) genes, and of the nuclear ITS1 region, to explore the phylogenetic affinities of two of these endemic taxa, viz. Arion gilvus Torres Mínguez, 1925 and A. ponsi Quintana Cardona, 2007. We also evaluated the use of these DNA sequence data as DNA barcodes for both species. Our results showed that ITS did not allow to differentiate among most of the Mesarion molecular operational taxonomic units (MOTUs) / morphospecies in Mesarion. Yet, the overall mean p-distance among the Mesarion MOTUs / morphospecies for both mtDNA fragments (16.7% for COI, 13% for 16S) was comparable to that between A. ponsi and its closest relative A. molinae (COI: 14.2%; 16S: 16.2%) and to that between A. gilvus and its closest relative A. urbiae (COI: 14.4%; 16S: 13.4%). Hence, with respect to mtDNA divergence, both A. ponsi and A. gilvus, behave as other Mesarion species or putative species-level MOTUs and thus are confirmed as distinct ‘species’.  相似文献   

13.
The putatively toxic dinoflagellates Pseudopfiesteria shumwayae (Glasgow et J. M. Burkh.) Litaker, Steid., P. L. Mason, Shields et P. A. Tester and Pfiesteria piscicida Steid. et J. M. Burkh. have been implicated in massive fish kills and of having negative impacts on human health along the mid‐Atlantic seaboard of the USA. Considerable debate still remains as to the mechanisms responsible for fish mortality (toxicity vs. micropredation) caused by these dinoflagellates. Genetic differences among these cultures have not been adequately investigated and may account for or correlate with phenotypic variability among strains within each species. Genetic variation among strains of Ps. shumwayae and P. piscicida was examined by PCR–RFLP analysis using cultures obtained from the Provasoli‐Guillard National Center for Culture of Marine Phytoplankton (CCMP), as well as those from our own and other colleagues’ collection efforts. Examination of restriction digest banding profiles for 22 strains of Ps. shumwayae revealed the presence of 10 polymorphic restriction endonuclease sites within the first and second internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene of the rDNA complex, and the cytochrome oxidase subunit I (COI) gene. Three compound genotypes were represented within the 22 Ps. shumwayae strains. Conversely, PCR–RFLP examination of 14 strains of P. piscicida at the same ITS1, 5.8S, and ITS2 regions revealed only one variable restriction endonuclease site, located in the ITS1 region. In addition, a dinoflagellate culture listed as P. piscicida (CCMP 1928) and analyzed as part of this study was identified as closely related to Luciella masanensis P. L. Mason, H. J. Jeong, Litaker, Reece et Steid.  相似文献   

14.
Aim We investigated patterns of genetic diversity among invasive populations of Ampithoe valida and Jassa marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute to the contemporary distribution of these species in the region. Location Native range: Atlantic North American coast; Invaded range: Pacific North American coast. Methods We assessed indices of genetic diversity based on DNA sequence data from the mitochondrial cytochrome c oxidase subunit I (COI) gene, determined the distribution of COI haplotypes among populations in both the invasive and putative native ranges of A. valida and J. marmorata and reconstructed phylogenetic relationships among COI haplotypes using both maximum parsimony and Bayesian approaches. Results Phylogenetic inference indicates that inaccurate species‐level identifications by morphological criteria are common among Jassa specimens. In addition, our data reveal the presence of three well supported but previously unrecognized clades of A. valida among specimens in the north‐eastern Pacific. Different species of Jassa and different genetic lineages of Ampithoe exhibit striking disparity in geographic distribution across the region as well as substantial differences in genetic diversity indices. Main conclusions Molecular genetic methods greatly improve the accuracy and resolution of identifications for invasive benthic marine amphipods at the species level and below. Our data suggest that multiple cryptic introductions of Ampithoe have occurred in the north‐eastern Pacific and highlight uncertainty regarding the origin and invasion histories of both Jassa and Ampithoe species. Additional morphological and genetic analyses are necessary to clarify the taxonomy and native biogeography of both amphipod genera.  相似文献   

15.
The alpha taxonomy of the globally distributed shark genus Squalus has been under intense investigation recently, and many new species have been described over the last decade. However, taxonomic uncertainty remains about several taxa. Without consistent nomenclature and the ability to reliably distinguish between the different Squalus species, basic data collection, downstream conservation and management efforts are seriously compromised. To aid in clarifying the taxonomic status of Squalus species in the eastern Atlantic and Mediterranean, we assessed species diversity at the molecular level and evaluated the consistency in species identification in the region. Samples from all nominal Squalus species recognized in the above regions were collected in an international effort and sequenced for regions of the mitochondrial COI and ND2 genes. These data were further analysed alongside publicly available sequences, including 19 of the 26 Squalus species globally recognized, to compare the regional genus‐level diversity with that found elsewhere. Our results confirm inconsistent species identification in the eastern Atlantic and Mediterranean Squalus, particularly concerning S. blainville and S. megalops, and reinforce the need to revise the status of S. megalops and S. mitsukurii as they may include several distinct species distributed around the world. The status of S. blainville is also discussed in the light of the current findings and its problematic taxonomic history.  相似文献   

16.

Background

Fully asexually reproducing taxa lack outcrossing. Hence, the classic Biological Species Concept cannot be applied.

Methodology/Principal Findings

We used DNA sequences from the mitochondrial COI gene and the nuclear ITS2 region to check species boundaries according to the evolutionary genetic (EG) species concept in five morphospecies in the putative ancient asexual ostracod genera, Penthesilenula and Darwinula, from different continents. We applied two methods for detecting cryptic species, namely the K/θ method and the General Mixed Yule Coalescent model (GMYC). We could confirm the existence of species in all five darwinulid morphospecies and additional cryptic diversity in three morphospecies, namely in Penthesilenula brasiliensis, Darwinula stevensoni and in P. aotearoa. The number of cryptic species within one morphospecies varied between seven (P. brasiliensis), five to six (D. stevensoni) and two (P. aotearoa), respectively, depending on the method used. Cryptic species mainly followed continental distributions. We also found evidence for coexistence at the local scale for Brazilian cryptic species of P. brasiliensis and P. aotearoa. Our ITS2 data confirmed that species exist in darwinulids but detected far less EG species, namely two to three cryptic species in P. brasiliensis and no cryptic species at all in the other darwinulid morphospecies.

Conclusions/Significance

Our results clearly demonstrate that both species and cryptic diversity can be recognized in putative ancient asexual ostracods using the EG species concept, and that COI data are more suitable than ITS2 for this purpose. The discovery of up to eight cryptic species within a single morphospecies will significantly increase estimates of biodiversity in this asexual ostracod group. Which factors, other than long-term geographic isolation, are important for speciation processes in these ancient asexuals remains to be investigated.  相似文献   

17.
There is currently conflict in the literature on the taxonomic status of the reportedly cosmopolitan species Neosiphonia harveyi, a common red alga along the coast of Atlantic Canada and New England, USA. Neosiphonia harveyi sensu lato was assessed using three molecular markers: COI‐5P, ITS and rbcL. All three markers clearly delimited three genetic species groups within N. harveyi sensu lato in this region, which we identified as N. harveyi, N. japonica and Polysiphonia akkeshiensis (here resurrected from synonymy with N. japonica). Although Neosiphonia harveyi is considered by some authors to be introduced to the Atlantic from the western Pacific, it was only confirmed from the North Atlantic suggesting it is native to this area. In contrast, Neosiphonia japonica was collected from only two sites in Rhode Island, USA, as well as from its reported native range in Asia (South Korea), which when combined with data in GenBank indicates that this species was introduced to the Northwest Atlantic. The GenBank data further indicate that N. japonica was also introduced to North Carolina, Spain, Australia and New Zealand. Despite the fact that all three markers clearly delimited N. harveyi and N. japonica as distinct genetic species groups, the ITS sequences for some N. harveyi individuals displayed mixed patterns and additivity indicating introgression of nuclear DNA from N. japonica into N. harveyi in the Northwest Atlantic. Introgression of DNA from an introduced species to a native species (i.e. ‘genetic pollution’) is one of the possible consequences of species introductions, and we believe this is the first documented evidence for this phenomenon in red algae.  相似文献   

18.
We tested the efficiency of cytochrome oxidase I (COI)‐barcoding as a taxonomic tool to discriminate and identify sympatric shrew species on Mount Nimba (Guinea). We identified 148 specimens at the species level using morphological characters and comparison with type specimens, including several taxa from Mount Nimba. We identified ten morphospecies and tested aspects of genetic diversity and monophyly using genetic data from three mitochondrial (16S, cytochrome b, and COI) and one nuclear marker (the breast cancer gene, BRCA). Nine morphospecies were validated under the phylogenetic and genetic species concepts, including the recently diverged species Crocidura buettikoferi, Crocidura theresae, and Crocidura grandiceps. Under the same concepts, our analyses revealed the presence of two cryptic species amongst animals identified as Crocidura muricauda. We then tested the efficiency of barcoding thanks to commonly used phenetic methods, with the 148 specimens representing 11 potentially valid species based on morphological and molecular data. We show that COI‐barcoding is a powerful tool for shrew identification and can be used for taxonomic surveys. The comparison of genetic divergence values shows the presence of a barcoding gap (i.e. difference between the highest intraspecific and the lowest interspecific genetic divergence values). Given that only a few COI sequences are available for Afrotropical shrews, our work is an important step forward toward their enrichment. We also tested the efficiency of the three other sequenced markers and found that cytochrome b is as efficient as COI for barcoding shrews. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 672–687.  相似文献   

19.
Deep‐sea octopuses of the genus Muusoctopus are thought to have originated in the Pacific Northern Hemisphere and then diversified throughout the Pacific and into the rest of the World Ocean. However, this hypothesis was inferred only from molecular divergence times. Here, the ancestral distribution and dispersal routes are estimated by Bayesian analysis based on a new phylogeny including 38 specimens from the south‐eastern Pacific Ocean. Morphological data and molecular sequences of three mitochondrial genes (16S rRNA, COI and COIII) are presented. The morphological data confirm that specimens newly acquired from off the coast of Chile comprise two species: Muusoctopus longibrachus and the poorly described species, Muusoctopus eicomar. The latter is here redescribed and is clearly distinguished from M. longibrachus and other closely related species in the region. A gene tree was built using Bayesian analysis to infer the phylogenetic position of these species within the species group, revealing that a large genetic distance separates the two sympatric Chilean species. M. longibrachus is confirmed as the sister species of Muusooctopus eureka from the Falkland Islands; while M. eicomar is a sister species of Muusoctopus yaquinae from the North Pacific, most closely related to the amphi‐Atlantic species Muusoctopus januarii. Molecular divergence times and ancestral distribution analyses suggest that genus Muusoctopus may have originated in the North Atlantic: one lineage dispersed directly southward to the Magellan region and another dispersed southward along the Eastern Pacific to the Southern Ocean and Antarctica. The Muusoctopus species in the Southern Hemisphere have different phylogenetic origins and represent independent invasions of this region.  相似文献   

20.
Endophytic filamentous brown algae are known to invade stipes and fronds of kelps with potentially negative effects for the hosts. They have simple filamentous thalli and are difficult to identify based on morphology. We investigated the molecular diversity of 56 endophytes isolated from seven different kelp species from Europe, Chile, Korea and New Zealand by sequencing two unlinked molecular markers (5’COI and ITS1). A majority of 49 of the isolated endophytes (88%) belonged to the genera Laminarionema and Laminariocolax. The endophyte Laminarionema elsbetiae was isolated from Saccharina latissima and S. japonica tissues in Europe and Korea, respectively, and showed highly similar sequences in both regions. Three different species of the genus Laminariocolax were identified, the most common of which was L. aecidioides, an endophyte with a worldwide distribution and a broad host range. The other two species, L. tomentosoides and a species described here as Laminariocolax atlanticus sp. nov., were associated with different kelp species in the northern hemisphere and the North Atlantic, respectively. Our results suggest that specific host-endophyte patterns could exist locally, as found in kelps in Brittany where all endophytes isolated from S. latissima were L. elsbetiae, all endophytes isolated from Laminaria digitata were Laminariocolax tomentosoides, and those isolated from Laminaria hyperborea were Laminariocolax atlanticus and L. aecidioides. However, this pattern was not consistent with the results from other places, such as Western Scotland and Helgoland where the same kelp species are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号