首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous sodium‐ion batteries have shown desired properties of high safety characteristics and low‐cost for large‐scale energy storage applications such as smart grid, because of the abundant sodium resources as well as the inherently safer aqueous electrolytes. Among various Na insertion electrode materials, tunnel‐type Na0.44MnO2 has been widely investigated as a positive electrode for aqueous sodium‐ion batteries. However, the low achievable capacity hinders its practical applications. Here, a novel sodium rich tunnel‐type positive material with a nominal composition of Na0.66[Mn0.66Ti0.34]O2 is reported. The tunnel‐type structure of Na0.44MnO2 obtained for this compound is confirmed by X‐ray diffraction and atomic‐scale spherical aberration‐corrected scanning transmission electron microscopy/electron energy‐loss spectrum. When cycled as positive electrode in full cells using NaTi2(PO4)3/C as negative electrode in 1 m Na2SO4 aqueous electrolyte, this material shows the highest capacity of 76 mAh g?1 among the Na insertion oxides with an average operating voltage of 1.2 V at a current rate of 2 C. These results demonstrate that Na0.66[Mn0.66Ti0.34]O2 is a promising positive electrode material for rechargeable aqueous sodium‐ion batteries.  相似文献   

2.
Narrow electrochemical stability window (1.23 V) of aqueous electrolytes is always considered the key obstacle preventing aqueous sodium‐ion chemistry of practical energy density and cycle life. The sodium‐ion water‐in‐salt electrolyte (NaWiSE) eliminates this barrier by offering a 2.5 V window through suppressing hydrogen evolution on anode with the formation of a Na+‐conducting solid‐electrolyte interphase (SEI) and reducing the overall electrochemical activity of water on cathode. A full aqueous Na‐ion battery constructed on Na0.66[Mn0.66Ti0.34]O2 as cathode and NaTi2(PO4)3 as anode exhibits superior performance at both low and high rates, as exemplified by extraordinarily high Coulombic efficiency (>99.2%) at a low rate (0.2 C) for >350 cycles, and excellent cycling stability with negligible capacity losses (0.006% per cycle) at a high rate (1 C) for >1200 cycles. Molecular modeling reveals some key differences between Li‐ion and Na‐ion WiSE, and identifies a more pronounced ion aggregation with frequent contacts between the sodium cation and fluorine of anion in the latter as one main factor responsible for the formation of a dense SEI at lower salt concentration than its Li cousin.  相似文献   

3.
Cathode materials are usually active in the range of 2–4.3 V, but the decomposition of the electrolytic salt above 4 V versus Na+/Na is common. Arguably, the greatest concern is the formation of HF after the reaction of the salts with water molecules, which are present as an impurity in the electrolyte. This HF ceaselessly attacks the active materials and gradually causes the failure of the electrode via electric isolation of the active materials. In this study, a bioinspired β‐NaCaPO4 nanolayer is reported on a P2‐type layered Na2/3[Ni1/3Mn2/3]O2 cathode material. The coating layers successfully scavenge HF and H2O, and excellent capacity retention is achieved with the β‐NaCaPO4‐coated Na2/3[Ni1/3Mn2/3]O2 electrode. This retention is possible because a less acidic environment is produced in the Na cells during prolonged cycling. The intrinsic stability of the coating layer also assists in delaying the exothermic decomposition reaction of the desodiated electrodes. Formation and reaction mechanisms are suggested for the coating layers responsible for the excellent electrode performance. The suggested technology is promising for use with cathode materials in rechargeable sodium batteries to mitigate the effects of acidic conditions in Na cells.  相似文献   

4.
Sodium storage in both solid–liquid and solid–solid interfaces is expected to extend the horizon of sodium‐ion batteries, leading to a new strategy for developing high‐performance energy‐storage materials. Here, a novel composite aerogel with porous Li4Ti5O12 (PLTO) nanofibers confined in a highly conductive 3D‐interconnected graphene framework (G‐PLTO) is designed and fabricated for Na storage. A high capacity of 195 mA h g?1 at 0.2 C and super‐long cycle life up to 12 000 cycles are attained. Electrochemical analysis shows that the intercalation‐based and interfacial Na storage behaviors take effect simultaneously in the G‐PLTO composite aerogel. An integrated Na storage mechanism is proposed. This study ascribes the excellent performance to the unique structure, which not only offers short pathways for Na+ diffusion and conductive networks for electron transport, but also guarantees plenty of PLTO–electrolyte and PLTO–graphene interfacial sites for Na+ adsorption.  相似文献   

5.
A practical, low‐cost synthesis of hollow mesoporous organic polymer (HMOP) spheres is reported. The electrochemical properties of Li+/Na+‐electrolyte membranes with these spheres substituting for oxide filler particles in poly(ethylene oxide) (PEO)‐filler composite are explored. The electrolyte membranes are mechanically robust, thermally stable to over 250 °C, and block dendrites from a metallic‐lithium/sodium anode. The Li+/Na+ transfer impedance across the lithium/sodium–electrolyte interface is initially acceptable at 65 °C and scavenging of impurities by the porous‐spheres filler lowers this impedance relative to that with Al2O3. All‐solid‐state Li/LiFePO4 and Na/NaTi2(PO4)3 cells give stable discharge capacity of ≈130 and 80 mAh g?1, respectively, at 0.5 C and 65 °C for 100 cycles.  相似文献   

6.
Developing multielectron reaction electrode materials is essential for achieving high specific capacity and high energy density in secondary batteries; however, it remains a great challenge. Herein, Na3MnTi(PO4)3/C hollow microspheres with an open and stable NASICON framework are synthesized by a spray‐drying‐assisted process. When applied as a cathode material for sodium‐ion batteries, the resultant Na3MnTi(PO4)3/C microspheres demonstrate fully reversible three‐electron redox reactions, corresponding to the Ti3+/4+ (≈2.1 V), Mn2+/3+ (≈3.5 V), and Mn3+/4+ (≈4.0 V vs Na+/Na) redox couples. In situ X‐ray diffraction results reveals that both solid‐solution and two‐phase electrochemical reactions are involved in the sodiation/desodiation processes. The high specific capacity (160 mAh g?1 at 0.2 C), outstanding cyclability (≈92% capacity retention after 500 cycles at 2 C), and the facile synthesis make the Na3MnTi(PO4)3/C a prospective cathode material for sodium‐ion batteries.  相似文献   

7.
Sodium‐ion batteries are promising for grid‐scale storage applications due to the natural abundance and low cost of sodium. However, few electrodes that can meet the requirements for practical applications are available today due to the limited routes to exploring new materials. Here, a new strategy is proposed through partially/fully substituting the redox couple of existing negative electrodes in their reduced forms to design the corresponding new positive electrode materials. The power of this strategy is demonstrated through the successful design of new tunnel‐type positive electrode materials of Na0.61[Mn0.61‐xFexTi0.39]O2, composed of non‐toxic and abundant elements: Na, Mn, Fe, Ti. In particular, the designed air‐stable Na0.61[Mn0.27Fe0.34Ti0.39]O2 shows a usable capacity of ≈90 mAh g?1, registering the highest value among the tunnel‐type oxides, and a high storage voltage of 3.56 V, corresponding to the Fe3+/Fe4+ redox couple realized for the first time in non‐layered oxides, which was confirmed by X‐ray absorption spectroscopy and Mössbauer spectroscopy. This new strategy would open an exciting route to explore electrode materials for rechargeable batteries.  相似文献   

8.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

9.
Poor cycling stability is one of the key scientific issues needing to be solved for Li‐ and Mn‐rich layered oxide cathode. In this paper, sodium carboxymethyl cellulose (CMC) is first used as a novel binder in Li1.2Ni0.13Co0.13Mn0.54O2 cathode to enhance its cycling stability. Electrochemical performance is conducted by galvanostatic charge and discharge. Structure and morphology are characterized by X‐ray diffraction, scanning electronic microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy. Results reveal that the CMC as binder can not only stabilize the electrode structure by preventing the electrode materials to detach from the current collector but also suppress the voltage fading of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode due to Na+ ions doping. Most importantly, the dissolution of metal elements from the cathode materials into the electrolyte is also inhibited.  相似文献   

10.
Herein, the synthesis of new quaternary layered Na‐based oxides of the type NaxMnyNizFe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2‐ and O3‐type as well as mixed P‐/O‐type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical performance, the simultaneous presence of the P‐ and O‐type phases is found to have a synergetic effect resulting in outstanding performance of the mixed phase material as a sodium‐ion cathode. The mixed P3/P2/O3‐type material, having an average elemental composition of Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2, overcomes the specific drawbacks associated with the P2‐ and O3‐type materials, allowing the outstanding electrochemical performance. In detail, the mixed phase material is able to deliver specific discharge capacities of up to 155 mAh g?1 (18 mA g?1) in the potential range of 2.0–4.3 V. In the narrower potential range of 2.5–4.3 V the material exhibits high average discharge potential (3.4 V versus Na/Na+), exceptional average coulombic efficiencies (>99.9%), and extraordinary capacity retention (90.2% after 601 cycles). The unexplored class of P‐/O‐type mixed phases introduces new perspectives for the development of layered positive electrode materials and powerful Na‐ion batteries.  相似文献   

11.
Aqueous lithium/sodium‐ion batteries (AIBs) have received increasing attention because of their intrinsic safety. However, the narrow electrochemical stability window (1.23 V) of the aqueous electrolyte significantly hinders the development of AIBs, especially the choice of electrode materials. Here, an aqueous electrolyte composed of LiClO4, urea, and H2O, which allows the electrochemical stability window to be expanded to 3.0 V, is developed. Novel [Li (H2O)x(organic)y]+ primary solvation sheath structures are developed in this aqueous electrolyte, which contribute to the formation of solid–electrolyte interface layers on the surfaces of both the cathode and anode. The expanded electrochemical stability window enables the construction of full aqueous Li‐ion batteries with LiMn2O4 cathodes and Mo6S8 anodes, demonstrating an operating voltage of 2.1 V and stability over 2000 cycles. Furthermore, a symmetric aqueous Na‐ion battery using Na3V2(PO4)3 as both the cathode and anode exhibits operating voltage of 1.7 V and stability over 1000 cycles at a rate of 5 C.  相似文献   

12.
Sodium‐ion batteries have attracted extraordinary attention owing to their low cost and raw materials in abundance. A major challenge of practical implementation is the lack of accessible and affordable anodes that can reversibly store a substantial amount of Na ions in a fast and stable manner. It is reported that surface engineered sodium titanate (Na2Ti3O7) nanotube arrays directly grown on Ti substrates can serve as efficient anodes to meet those stringent requirements. The fabrication of the nanotube arrays involves hydrothermal growing of Na2Ti3O7 nanotubes, surface deposition of a thin layer of TiO2, and subsequent sulfidation. The resulting nanoarrays exhibit a high electrochemical Na‐storage activity that outperforms other Na2Ti3O7 based materials. They deliver high reversible capacities of 221 mAh g?1 and exhibit a superior cycling efficiency and rate capability, retaining 78 mAh g?1 at 10 C (1770 mA g?1) over 10 000 continuous cycles. In addition, the full cell consisting of Na2Ti3O7 nanotube anode and Na2/3(Ni1/3Mn2/3)O2 cathode is capable of delivering a specific energy of ≈110 Wh kg?1 (based on the mass of both electrodes). The surface engineering can provide useful tools in the development of high performance anode materials with robust power and cyclability.  相似文献   

13.
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. However, solid‐state batteries (SSBs) have been plagued by the relatively low ionic conductivity of SEs and large charge‐transfer resistance between electrode and SE. Here, a new design strategy is reported for improving the ionic conductivity of SE by self‐forming a composite material. An optimized Na+ ion conducting composite electrolyte derived from the Na1+ n Zr2Si n P3? n O12 NASICON (Na Super Ionic Conductor) structure is successfully synthesized, yielding ultrahigh ionic conductivity of 3.4 mS cm?1 at 25 °C and 14 mS cm?1 at 80 °C. On the other hand, in order to enhance the charge‐transfer rate at the electrode/electrolyte interface, an interface modification strategy is demonstrated by utilization of a small amount of nonflammable and nonvolatile ionic liquid (IL) at the cathode side in SSBs. The IL acts as a wetting agent, enabling a favorable interface kinetic in SSBs. The Na3V2(PO4)3/IL/SE/Na SSB exhibits excellent cycle performance and rate capability. A specific capacity of ≈90 mA h g?1 is maintained after 10 000 cycles without capacity decay under 10 C rate at room temperature. This provides a new perspective to design fast ion conductors and fabricate long life SSBs.  相似文献   

14.
As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.  相似文献   

15.
This paper introduces oxygen‐deficient black TiO2 with hierarchically ordered porous structure fabricated by a simple hydrogen reduction as a carbon‐ and binder‐free cathode, demonstrating superior energy density and stability. With the high electrical conductivity derived from oxygen vacancies or Ti3+ ions, this unique electrode features micrometer‐sized voids with mesoporous walls for the effective accommodation of Li2O2 toroid and for the rapid transport of reaction molecules without the electrode being clogged. In the highly ordered architecture, toroidal Li2O2 particles are guided to form with a regular size and separation, which induces the most of Li2O2 external surface to be directly exposed to the electrolyte. Therefore, large Li2O2 toroids (≈300 nm) grown from solution can be effectively charged by incorporating a soluble catalyst, resulting in a very small polarization (≈0.37 V). Furthermore, disordered nanoshell in black TiO2 is suggested to protect the oxygen‐deficient crystalline core, by which oxidation of Ti3+ is kinetically impeded during battery operation, leading to the enhanced electrode stability even in a highly oxidizing environment under high voltage (≈4 V).  相似文献   

16.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

17.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

18.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

19.
Thin solid‐state electrolytes with nonflammability, high ionic conductivity, low interfacial resistance, and good processability are urgently required for next‐generation safe, high energy density lithium metal batteries. Here, a 3D Li6.75La3Zr1.75Ta0.25O12 (LLZTO) self‐supporting framework interconnected by polytetrafluoroethylene (PTFE) binder is prepared through a simple grinding method without any solvent. Subsequently, a garnet‐based composite electrolyte is achieved through filling the flexible 3D LLZTO framework with a succinonitrile solid electrolyte. Due to the high content of garnet ceramic (80.4 wt%) and high heat‐resistance of the PTFE binder, such a composite electrolyte film with nonflammability and high processability exhibits a wide electrochemical window of 4.8 V versus Li/Li+ and high ionic transference number of 0.53. The continuous Li+ transfer channels between interconnected LLZTO particles and succinonitrile, and the soft electrolyte/electrode interface jointly contribute to a high ambient‐temperature ionic conductivity of 1.2 × 10?4 S cm?1 and excellent long‐term stability of the Li symmetric battery (stable at a current density of 0.1 mA cm?2 for over 500 h). Furthermore, as‐prepared LiFePO4|Li and LiNi0.5Mn0.3Co0.2O2|Li batteries based on the thin composite electrolyte exhibit high discharge specific capacities of 153 and 158 mAh g?1 respectively, and desirable cyclic stabilities at room temperature.  相似文献   

20.
Energy‐storage technology is moving beyond lithium batteries to sodium as a result of its high abundance and low cost. However, this sensible transition requires the discovery of high‐rate and long‐lifespan anode materials, which remains a significant challenge. Here, the facile synthesis of an amorphous Sn2P2O7/reduced graphene oxide nanocomposite and its sodium storage performance between 0.01 and 3.0 V are reported for the first time. This hybrid electrode delivers a high specific capacity of 480 mA h g?1 at a current density of 50 mA g?1 and superior rate performance of 250 and 165 mA h g?1 at 2 and 10 A g?1, respectively. Strikingly, this anode can sustain 15 000 cycles while retaining over 70% of the initial capacity. Quantitative kinetic analysis reveals that the sodium storage is governed by pseudocapacitance, particularly at high current rates. A full cell with sodium super ionic conductor (NASICON)‐structured Na3V2(PO4)2F3 and Na3V2(PO4)3 as cathodes exhibits a high energy density of over 140 W h kg?1 and a power density of nearly 9000 W kg?1 as well as stability over 1000 cycles. This exceptional performance suggests that the present system is a promising power source for promoting the substantial use of low‐cost energy storage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号