首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor‐like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine‐rich repeat (LRR)‐RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP‐interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR‐RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure–function relationships exist. We used 1342 protein sequences annotated as ‘SERK’ and ‘SERK‐like’ plus related sequences in order to estimate phylogeny within the LRR‐RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR‐RLKII 1–5), in each of which the main pattern of land plant relationships re‐occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron–exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR‐RLKs are incongruent: whereas the LRR part supports a LRR‐RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few ‘radical’ amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR‐RLKII–receptor complex interaction are located at N‐capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR‐RLKII clades.  相似文献   

2.
3.
4.
The polygalacturonase (PG) gene family is one of the largest gene families in plants. PGs are involved in various plant development steps. The evolutionary processes accounting for the functional divergence and the specialized functions of PGs in land plants are unclear. Whole sets of PG genes were retrieved from the genome web sites of model organisms in algae and land plants. The number of PG genes was expanded by lineage-specific manner with the biological complexity of the organism. Differentiation of PGs was related with phylogenetic hierarchy such as presence of rhamno-PGs from algae to plants, endo- and exo-PGs in land plants, exo-PGs in flowering plants. Gene structure analysis revealed that land plant PG genes resulted from differential intron gain and loss, with the latter event predominating. Differential intron losses partitioned the PGs into separate clades to be expressed differentially during plant development. Intron position and phase were not conserved between PGs of algae and land plants but conserved among PG genes of land plants from moss to vascular plants, indicating that the current introns in the PGs in land plants appeared after the split between unicellular algae and multicelluar land plants. The results demonstrate that the functional divergence and differentiation of PGs in land plants is attributable to intron losses.  相似文献   

5.
6.
We used phylogenetic and ecological information to study the evolution of host‐plant specialization and colour polymorphism in the genus Timema, which comprises 14 species of walking‐sticks that are subject to strong selection for cryptic coloration on their host‐plants. Phylogenetic analysis indicated that this genus consists of three main lineages. Two of the lineages include highly generalized basal species and relatively specialized distal species, and one of the lineages comprises four specialized species. We tested for phylogenetic conservatism in the traits studied via randomizing host‐plant use, and the four basic Timema colour patterns, across the tips of the phylogeny, and determining if the observed number of inferred changes was significantly low compared to the distribution of numbers of inferred changes expected under the null model. This analysis showed that (1) host‐plant use has evolved nonrandomly, such that more closely related species tend to use similar sets of hosts and (2) colour pattern evolution exhibits considerable lability. Inference of ancestral states using maximum parsimony, under four models for the relative ease of gain and loss of plant hosts or colour morphs, showed that (1) for all models with gains of host‐plants even marginally more difficult than losses, and for most optimizations with gains and losses equally difficult, the ancestral Timema were generalized, feeding on the chaparral plants Ceanothus and Adenostoma and possibly other taxa, and (2) for all models with gains of colour morphs more difficult than losses, the ancestral Timema were polymorphic for colour pattern. Generation of null distributions of inferred ancestral states showed that the maximum‐parsimony inference of host‐plant generalization was most robust for the most speciose of the three main Timema lineages. Ancestral states were also inferred using maximum likelihood, after recoding host‐plant use and colour polymorphism as dichotomous characters. Likelihood analyses provided some support for inference of generalization in host‐plant use at ancestral nodes of the two lineages exhibiting mixtures of generalists and specialists, although levels of uncertainty were high. By contrast, likelihood analysis did not estimate ancestral colour morph patterns with any confidence, due to inferred rates of change that were high with respect to speciation rates. Information from biogeography, floristic history and the timing of diversification of the genus are compatible with patterns of inferred ancestral host‐plant use. Diversification in the genus Timema appears to engender three main processes: (1) increased specialization via loss of host‐plants, (2) retention of the same, single, host‐plant and (3) shifts to novel hosts to which lineages were ‘preadapted’ in colour pattern. Our evidence suggests that the radiation of this genus has involved multiple evolutionary transitions from individual‐level specialization (multiple‐niche polymorphism) to population‐level and species‐level specialization. Ecological studies of Timema suggest that such transitions are driven by diversifying selection for crypsis. This paper provides the first phylogeny‐based evidence for the macroevolutionary importance of predation by generalist natural enemies in the evolution of specialization.  相似文献   

7.
Furanocoumarins are specialized metabolites that are involved in the defense of plants against phytophagous insects. The molecular and functional characterization of the genes involved in their biosynthetic pathway is only partially complete. Many recent reports have described gene clusters responsible for the biosynthesis of specialized metabolites in plants. To investigate possible co‐localization of the genes involved in the furanocoumarin pathway, we sequenced parsnip BAC clones spanning two different gene loci. We found that two genes previously identified in this pathway, CYP71AJ3 and CYP71AJ4, were located on the same BAC, whereas a third gene, PsPT1, belonged to a different BAC clone. Chromosome mapping using fluorescence in situ hybridization (FISH) indicated that PsPT1 and the CYP71AJ3CYP71AJ4 clusters are located on two different chromosomes. Sequencing the BAC clone harboring PsPT1 led to the identification of a gene encoding an Fe(II) α‐ketoglutarate‐dependent dioxygenase (PsDIOX) situated in the neighborhood of PsPT1 and confirmed the occurrence of a second gene cluster involved in the furanocoumarin pathway. This enzyme metabolizes p‐coumaroyl CoA, leading exclusively to the synthesis of umbelliferone, an important intermediate compound in furanocoumarin synthesis. This work provides an insight into the genomic organization of genes from the furanocoumarin biosynthesis pathway organized in more than one gene cluster. It also confirms that the screening of a genomic library and the sequencing of BAC clones represent a valuable tool to identify genes involved in biosynthetic pathways dedicated to specialized metabolite synthesis.  相似文献   

8.
9.
10.
Agrobacterium tumefaciens is the causal agent of crown gall disease in a wide range of plants via a unique interkingdom DNA transfer from bacterial cells into the plant genome. Agrobacterium tumefaciens is capable of transferring its T‐DNA into different plant parts at different developmental stages for transient and stable transformation. However, the plant genes and mechanisms involved in these transformation processes are not well understood. We used Arabidopsis thaliana Col‐0 seedlings to reveal the gene expression profiles at early time points during Agrobacterium infection. Common and differentially expressed genes were found in shoots and roots. A gene ontology analysis showed that the glucosinolate (GS) biosynthesis pathway was an enriched common response. Strikingly, several genes involved in indole glucosinolate (iGS) modification and the camalexin biosynthesis pathway were up‐regulated, whereas genes in aliphatic glucosinolate (aGS) biosynthesis were generally down‐regulated, on Agrobacterium infection. Thus, we evaluated the impacts of GSs and camalexin during different stages of Agrobacterium‐mediated transformation combining Arabidopsis mutant studies, metabolite profiling and exogenous applications of various GS hydrolysis products or camalexin. The results suggest that the iGS hydrolysis pathway plays an inhibitory role on transformation efficiency in Arabidopsis seedlings at the early infection stage. Later in the Agrobacterium infection process, the accumulation of camalexin is a key factor inhibiting tumour development on Arabidopsis inflorescence stalks. In conclusion, this study reveals the differential roles of GSs and camalexin at different stages of Agrobacterium‐mediated transformation and provides new insights into crown gall disease control and improvement of plant transformation.  相似文献   

11.
12.
Coumarins are important compounds that contribute to the adaptation of plants to biotic or abiotic stresses. Among coumarins, umbelliferone occupies a pivotal position in the plant phenylpropanoid network. Previous studies indicated that umbelliferone is derived from the ortho‐hydroxylation of p‐coumaric acid by an unknown biochemical step to yield 2,4‐dihydroxycinnamic acid, which then undergoes spontaneous lactonization. Based on a recent report of a gene encoding a 2‐oxoglutarate‐dependent dioxygenase from Arabidopsis thaliana that exhibited feruloyl CoA 6′‐hydroxylase activity ( Bourgaud et al., 2006 ), we combined a bioinformatic approach and a cDNA library screen to identify an orthologous ORF (Genbank accession number JF799117 ) from Ruta graveolens L. This ORF shares 59% amino acid identity with feruloyl CoA 6′‐hydroxylase, was functionally expressed in Escherichia coli, and converted feruloyl CoA into scopoletin and p‐coumaroyl CoA into umbelliferone with equal activity. Its bi‐functionality was further confirmed in planta: transient expression of JF799117 in Nicotiana benthamiana yielded plants with leaves containing high levels of umbelliferone and scopoletin when compared to control plants, which contained barely detectable traces of these compounds. The expression of JF799117 was also tightly correlated to the amount of umbelliferone that was found in UV‐elicited R. graveolens leaves. Therefore, JF799117 encodes a p‐coumaroyl CoA 2′‐hydroxylase in R. graveolens, which represents a previously uncharacterized step in the synthesis of umbelliferone in plants. Psoralen, which is an important furanocoumarin in R. graveolens, was found to be a competitive inhibitor of the enzyme, and it may exert this effect through negative feedback on the enzyme at an upstream position in the pathway.  相似文献   

13.
l ‐Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant‐derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site‐directed mutagenesis we have identified a 22‐amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain‐containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain‐containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed.  相似文献   

14.
Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.  相似文献   

15.
Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.  相似文献   

16.
For most plant hormones, biological activity is suppressed by reversible conjugation to sugars, amino acids and other small molecules. In contrast, the conjugation of jasmonic acid (JA) to isoleucine (Ile) is known to enhance the activity of JA. Whereas hydroxylation and carboxylation of JA‐Ile permanently inactivates JA‐Ile‐mediated signaling in plants, the alternative deactivation pathway of JA‐Ile by its direct hydrolysis to JA remains unstudied. We show that Nicotiana attenuata jasmonoyl‐l ‐isoleucine hydrolase 1 (JIH1), a close homologue of previously characterized indoleacetic acid alanine resistant 3 (IAR3) gene in Arabidopsis, hydrolyzes both JA‐Ile and IAA‐Ala in vitro. When the herbivory‐inducible NaJIH1 gene was silenced by RNA interference, JA‐Ile levels increased dramatically after simulated herbivory in irJIH1, compared with wild‐type (WT) plants. When specialist (Manduca sexta) or generalist (Spodoptera littoralis) herbivores fed on irJIH1 plants they gained significantly less mass compared with those feeding on wild‐type (WT) plants. The poor larval performance was strongly correlated with the higher accumulation of several JA‐Ile‐dependent direct defense metabolites in irJIH1 plants. In the field, irJIH1 plants attracted substantially more Geocoris predators to the experimentally attached M. sexta eggs on their leaves, compared with empty vector plants, which correlated with higher herbivory‐elicited emissions of volatiles known to function as indirect defenses. We conclude that NaJIH1 encodes a new homeostatic step in JA metabolism that, together with JA and JA‐Ile‐hydroxylation and carboxylation of JA‐Ile, rapidly attenuates the JA‐Ile burst, allowing plants to tailor the expression of direct and indirect defenses against herbivore attack in nature.  相似文献   

17.
Plants dynamically regulate water use by the movement of stomata on the surface of leaves. Stomatal responses to changes in vapour pressure deficit (VPD) are the principal regulator of daytime transpiration and water use efficiency in land plants. In angiosperms, stomatal responses to VPD appear to be regulated by the phytohormone abscisic acid (ABA), yet the origin of this ABA is controversial. After a 20 min exposure of plants, from three diverse angiosperm species, to a doubling in VPD, stomata closed, foliar ABA levels increased and the expression of the gene encoding the key, rate‐limiting carotenoid cleavage enzyme (9‐cis‐epoxycarotenoid dioxygenase, NCED) in the ABA biosynthetic pathway was significantly up‐regulated. The NCED gene was the only gene in the ABA biosynthetic pathway to be up‐regulated over the short time scale corresponding to the response of stomata. The closure of stomata and rapid increase in foliar ABA levels could not be explained by the release of ABA from internal stores in the leaf or the hydrolysis of the conjugate ABA‐glucose ester. These results implicate an extremely rapid de novo biosynthesis of ABA, mediated by a single gene, as the means by which angiosperm stomata respond to natural changes in VPD.  相似文献   

18.
19.
20.
Fat storage‐inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)‐localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension‐cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER‐LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER‐vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号