首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular analyses are transforming our understanding of the evolution of scleractinian corals and conflict with traditional classification, which is based on skeletal morphology. A new classification system, which integrates molecular and morphological data, is essential for documenting patterns of biodiversity and establishing priorities for marine conservation, as well as providing the morphological characters needed for linking present‐day corals with fossil species. The present monograph is the first in a series whose goal is to develop such an integrated system. It addresses the taxonomic relationships of 55 Recent zooxanthellate genera (one new) in seven families (one new), which were previously assigned to the suborder Faviina (eight genera are transferred to incertae sedis). The present monograph has two objectives. First, we introduce the higher‐level classification system for the 46 genera whose relationships are clear. Second, we formally revise the taxonomy of those corals belonging to the newly discovered family‐level clade (restricted today to the western Atlantic and Caribbean regions); this revised family Mussidae consists of ten genera (one of which is new) and 26 species that were previously assigned to the ‘traditional’ families Faviidae and Mussidae. To guide in discovering morphologic characters diagnostic of higher‐level taxa, we mapped a total of 38 morphologic characters [19 macromorphology, eight micromorphology, 11 microstructure] onto a molecular tree consisting of 67 species [22 Indo‐Pacific and seven Atlantic species in the traditional family Faviidae; 13 Indo‐Pacific and ten Atlantic species in the traditional family Mussidae; 13 species in the traditional families Merulinidae (5), Pectiniidae (7), and Trachyphylliidae (1); two Atlantic species of traditional Montastraea], and trace character histories using parsimony. To evaluate the overall effectiveness of morphological data in phylogeny reconstruction, we performed morphology‐based phylogenetic analyses using 27 (80 states) of the 38 characters, and compared morphological trees with molecular trees. The results of the ancestral state reconstructions revealed extensive homoplasy in almost all morphological characters. Family‐ and subfamily‐level molecular clades [previously identified as XVII?XXI] are best distinguished on the basis of the shapes of septal teeth and corresponding microstructure. The newly revised family Mussidae (XXI) has septal teeth with regular pointed tips (a symplesiomorphy) and a stout blocky appearance. It has two subfamilies, Mussinae and Faviinae. The subfamily Mussinae is distinguished by spine‐shaped teeth and widely spaced costoseptal clusters of calcification centres. The subfamily Faviinae is distinguished by blocky, pointed tricorne or paddle‐shaped teeth with elliptical bases, transverse structures such as carinae that cross the septal plane, and well‐developed aligned granules. Defining diagnostic characters for the broader data set is more challenging. In analyses of taxonomic subsets of the data set that were defined by clade, morphological phylogenetic analyses clearly distinguished the families Mussidae (XXI) and Lobophylliidae (XIX), as well as the two subfamilies of Mussidae (Mussinae, Faviinae), with one exception (Homophyllia australis). However, analyses of the entire 67‐species data set distinguished the family Lobophylliidae (XIX), but not the Merulinidae (XVII) and not the newly defined Mussidae (XXI), although the subfamily Mussinae was recovered as monophyletic. Some lower‐level relationships within the Merulinidae (XVII) agree with molecular results, but this particular family is especially problematic and requires additional molecular and morphological study. Future work including fossils will not only allow estimation of divergence times but also facilitate examination of the relationship between these divergences and changes in the environment and biogeography. Published 2012. This article is a U.S. Government work and is in the public domain in the USA. Zoological Journal of the Linnean Society, 2012, 166 , 465–529.  相似文献   

2.
Lobophylliidae is a family‐level clade of corals within the ‘robust’ lineage of Scleractinia. It comprises species traditionally classified as Indo‐Pacific ‘mussids’, ‘faviids’, and ‘pectiniids’. Following detailed revisions of the closely related families Merulinidae, Mussidae, Montastraeidae, and Diploastraeidae, this monograph focuses on the taxonomy of Lobophylliidae. Specifically, we studied 44 of a total of 54 living lobophylliid species from all 11 genera based on an integrative analysis of colony, corallite, and subcorallite morphology with molecular sequence data. By examining coral skeletal features at three distinct levels – macromorphology, micromorphology, and microstructure – we built a morphological matrix comprising 46 characters. Data were analysed via maximum parsimony and transformed onto a robust molecular phylogeny inferred using two nuclear (histone H3 and internal transcribed spacers) and one mitochondrial (cytochrome c oxidase subunit I) DNA loci. The results suggest that micromorphological characters exhibit the lowest level of homoplasy within Lobophylliidae. Molecular and morphological trees show that Symphyllia, Parascolymia, and Australomussa should be considered junior synonyms of Lobophyllia, whereas Lobophyllia pachysepta needs to be transferred to Acanthastrea. Our analyses also lend strong support to recent revisions of Acanthastrea, which has been reorganized into five separate genera (Lobophyllia, Acanthastrea, Homophyllia, Sclerophyllia, and Micromussa), and to the establishment of Australophyllia. Cynarina and the monotypic Moseleya remain unchanged, and there are insufficient data to redefine Oxypora, Echinophyllia, and Echinomorpha. Finally, all lobophylliid genera are diagnosed under the phylogenetic classification system proposed here, which will facilitate the placement of extinct taxa on the scleractinian tree of life.  相似文献   

3.
4.
The marmosets, tribe Callitrichini, are the most speciose clade in the subfamily Callitrichinae, containing 21 species. However, there is no consensus among molecular and morphological systematists as to how many genera should be recognized for the group. To test the morphological support for the alternative generic classifications, this study presents a comprehensive phylogenetic analysis. It is the first such analysis to include all 21 species and employ continuous and discrete osteological, pelage and tegument, karyological and vocal characters. This dataset was combined with nucleotide sequences from two mitochondrial and four nuclear regions. Separate analyses showed that, among morphological datasets, osteological characters were best at solving relationships at more inclusive levels, whilst pelage characters were most informative at the interspecific level. This suggests the presence of different transformation rates for the two character sets. When a single most parsimonious tree was obtained using the 83‐character matrix, three main clades were identified, supporting the division of the marmosets into three genera: Callithrix, Cebuella and Mico. The total evidence analysis that included an additional 3481 molecular characters corroborated most of the morphology‐based clades and also supported a three‐genus classification of the marmosets. This is the first morphological study to support an Amazonian marmoset clade (Cebuella Mico), which is also strongly supported in exclusively molecular phylogenies, and to synonimize Callibella under Mico.  相似文献   

5.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

6.
Recent molecular analyses have challenged the traditional classification of scleractinian corals at all taxonomic levels suggesting that new morphological characters are needed. Here we tackle this problem for the family Mussidae, which is polyphyletic. Most of its members belong to two molecular clades composed of: (1) Atlantic Mussidae and Faviidae (except Montastraea) and (2) Pacific Mussidae (Cynarina, Lobophyllia, Scolymia, Symphyllia) and Pectiniidae. Other Pacific mussids (e.g. Acanthastrea) belong to additional clades. To discover new characters that would better serve as phylogenetic markers, we compare the skeletal morphology of mussid genera in different molecular‐based clades. Three sets of characters are considered: (1) macromorphology (budding; colony form; size and shape of corallites; numbers of septal cycles), (2) micromorphology (shapes and distributions of septal teeth and granules), and (3) microstructure (arrangement of calcification centres and thickening deposits within costosepta). Although most traditional macromorphological characters exhibit homoplasy, several new micromorphological characters are effective at distinguishing clades, including the shapes and distribution of septal teeth and granules, the area between teeth, and the development of thickening deposits. Arrangements of calcification centres and fibres differ among clades, but the fine‐scale structure of thickening deposits does not.  相似文献   

7.
Jeon, M.‐J., Song, J.‐H. & Ahn, K.‐J. (2012). Molecular phylogeny of the marine littoral genus Cafius (Coleoptera: Staphylinidae: Staphylininae) and implications for classification. —Zoologica Scripta, 41, 150–159. A phylogenetic analysis of the marine littoral genus Cafius Stephens is presented based on molecular characters. The data set comprised partial mitochondrial COI (910 bp), COII (369 bp), 12S rDNA (351–354 bp), 16S rDNA (505–509 bp) and nearly complete sequences of 18S rDNA (1814–1830 bp) for 37 species. Twenty‐seven Cafius species, representing five of six subgenera, two Remus Holme species, three Phucobius Sharp species, monotypic Thinocafius Steel and four outgroups were included. The sequences were analysed simultaneously by parsimony analysis in Tree Analysis Using New Technology (TNT) with traditional manual alignment, direct optimization (DO) in the program POY4 under a variety of gap costs and partitioned Bayesian analysis for the combined data. The genus Cafius and nearly all of its subgenera were not supported as being monophyletic. Instead, all analyses (parsimony trees, DO tree under equal weighting and Bayesian tree) showed monophyly of Cafius + Phucobius + Remus + Thinocafius (clade Z) and all seven nested clades (A–G). However, the phylogenetic relationships among clades A–G differed among the analyses. The genus Phucobius was recovered as a monophyletic group within Cafius. The genus Remus was not monophyletic but formed a clade with C. rufescens Sharp and C. rufifrons Bierig within Cafius. The genus Thinocafius formed a clade with C. caviceps Broun, C. litoreus (Broun) and C. quadriimpressus (White) within Cafius. We propose new concepts for the genus Cafius and its related genera, and the seven nested clades.  相似文献   

8.
The tribe Abrotrichini (five genera and 14 living species) is a small clade within the speciose subfamily Sigmodontinae (Rodentia, Cricetidae), representing one of the extant successful radiations of mammals at southern high latitudes of the Neotropics. Its distribution is mostly Andean, reaching its greatest diversity in southern Argentina and Chile. We evaluate the phylogenetic relationships within this tribe through parsimony and Bayesian approaches based on 99 morphological characters (including 19 integumental characters, 38 skull characters, 31 dental characters, three postcranial skeletal characters, seven from the male accessory glands and phallus and one from the digestive system) and six molecular markers (one mitochondrial and five nuclear). We include representatives of all, except one, of the currently recognized species of living Abrotrichini plus one fossil form. Based on total evidence, we recovered a primary division between the genus Abrothrix and a group including the long‐clawed Abrotrichini, Chelemys, Geoxus, Notiomys and Pearsonomys. Both clades are recognized and named here as subtribes. The large degree of morphological variation observed within Abrothrix suggests that species in the genus fall into four groups, which we recognize as subgenera. In addition, the two known species of Chelemys do not form a monophyletic group, and Geoxus was recovered as paraphyletic with respect to Pearsonomys. To reconcile classification and phylogenetics, we describe a new genus for Chelemys macronyx and include Pearsonomys as a junior synonym of Geoxus. Our results highlight the importance of both morphology and molecules in resolving the phylogenetic relationships within this tribe. Based on biogeographical analyses, we hypothesize that Abrotrichini originated in south‐western South America by vicariance and then diversified mostly by successive dispersal events.  相似文献   

9.
Some of the morphological characters used in Porifera taxonomy have often been shown to be inconsistent. In the present study, we tested the phylogenetic coherence of currently used taxonomic characters of the calcarean genus Clathrina. For this, 20 species of Clathrina and three other calcinean genera (Ascandra, Guancha, and Leucetta) were sequenced for the ITS and D2 region of the 28S ribosomal DNA. Maximum‐likelihood and maximum‐parsimony algorithms were used to reconstruct phylogenetic trees. Deep divergences were observed in our tree and Clathrina was shown to be paraphyletic. The major split in our topology showed a clear‐cut distinction between sponges with and without tetractine spicules. Moreover, a group of yellow‐coloured Clathrina was clearly separated from the remaining white‐coloured species. Our results show that the presence of diactines, water‐collecting tubes, the degree of cormus anastomosis, and actine shapes do not correlate with the major clades of the calcinean phylogeny. On the other hand, the presence of tripods, the absence of tetractines, and the presence of spines in the apical actine of tetractines seem to be good synapomorphies for clades in our tree. Our results demonstrate that skeleton characters can be reliably used in higher level taxonomy in Clathrinida. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1026–1034.  相似文献   

10.
Hydrozoans of the genus Zanclea have been acknowledged only recently as a fundamental component of the highly diverse fauna associated with reef‐building scleractinian corals. Although widely distributed in coral reefs and demonstrated to be important in protecting corals from predation and diseases, the biodiversity of these hydrozoans remains enigmatic due to the paucity of available morphological characters, incomplete morphological characterisations and the possible existence of cryptic species. Recently, molecular techniques have revealed the existence of multiple hidden genetic lineages not yet supported by diagnostic morphological characters. In this work, we further explore the morpho‐diversity of three genetic lineages, namely Zanclea associated with the coral genera Goniastrea (clade I), Porites (clade II) and Pavona (clade VI). Aside from providing a complete classical characterisation of the polyp and medusa stage of each clade, we searched for new potential taxonomic indicators either on symbiotic hydroids or on host corals. On the hydroids, statistical analyses on almost 7,000 nematocyst capsules revealed a significant difference in terms of nematocyst size among the three Zanclea clades investigated. On each host coral genus, we identified peculiar skeletal modifications related to the presence of Zanclea symbionts. Lastly, we discussed the potential diagnostic value of these footprints in the characterisation of Zanclea–scleractinian associations.  相似文献   

11.
Echinocereus is a morphologically diverse genus that includes 64 species grouped into eight taxonomic sections based on morphological traits. In previous molecular phylogenetic analyses, the relationships amongst Echinocereus species were not entirely revealed and useful characters to recognize clades were not provided. The inclusion of several sources of evidence in a phylogenetic analysis is likely to produce more supported hypotheses. Therefore, we performed a combined phylogenetic analysis with a set of 44 morphological characters and six chloroplast DNA sequences. Topologies from parsimony and Bayesian analyses were mostly congruent. However, the relationships of E. poselgeri were not consistent between analyses. A second Bayesian analysis using a long-branch extraction test resulted in a topology with the morphological position of E. poselgeri congruent with that in parsimony analysis. Parsimony and Bayesian analyses corroborated the monophyly of Echinocereus, which included eight monophyletic groups. The combined phylogeny integrated into different clades those taxa that were not determined in previous analyses and changed the relationships of some recognized clades. The clades did not recover the recent infrageneric classification. In the present study, a new sectional classification for Echinocereus is proposed based on the eight recovered clades, which is supported by a combination of morphological and molecular characters. An identification key for sections in the genus is included.  相似文献   

12.
Abstract A phylogenetic analysis of the Melanthripidae genus Cranothrips Bagnall is presented. A data matrix with continuous and discrete characters was analysed under parsimony criteria. Continuous and discrete characters were analysed, separately and in combination. When the different blocks of characters were analysed separately, important differences in tree topologies occurred. The optimal tree obtained from discrete characters alone was similar to the tree resulting from total evidence. For most groups, the support values resulting from all the evidence analysis were higher than those obtained from the discrete‐only analysis. Two new species from Australia are described and illustrated, Cranothrips ibisca sp.n. and Cranothrips conostylus sp.n. A key to the 12 species in the genus is provided. Additionally, the host associations and the distributional patterns of the four worldwide genera of Melanthripidae are discussed.  相似文献   

13.
Abstract Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit II (COII) mtDNA sequences (684 bp). Twenty‐seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%–11.1% between genera within subfamilies, and 8.8%–12.3% between subfamilies. Amino acid sequence diverged 0–6.1% between genera within subfamilies, and 0.4%–7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.  相似文献   

14.
Recent molecular phylogenies conflict with traditional scleractinian classification at ranks ranging from suborder to genus, challenging morphologists to discover new characters that better agree with molecular data. Such characters are essential for including fossils in analyses and tracing evolutionary patterns through geologic time. We examine the skeletal morphology of 36 species belonging to the traditional families Faviidae, Merulinidae, Pectiniidae, and Trachyphylliidae (3 Atlantic, 14 Indo‐Pacific, 2 cosmopolitan genera) at the macromorphological, micromorphological, and microstructural levels. Molecular analyses indicate that the families are not monophyletic groups, but consist of six family‐level clades, four of which are examined [clade XV = Diploastrea heliopora; clade XVI = Montastraea cavernosa; clade XVII (“Pacific faviids”) = Pacific faviids (part) + merulinids (part) + pectiniids (part) + M. annularis complex; clade XXI (“Atlantic faviids”) = Atlantic faviids (part) + Atlantic mussids]. Comparisons among molecular clades indicate that micromorphological and microstructural characters (singly and in combination) are clade diagnostic, but with two exceptions, macromorphologic characters are not. The septal teeth of “Atlantic faviids” are paddle‐shaped (strong secondary calcification axes) or blocky, whereas the septal teeth of “Pacific faviids” are spine‐shaped or multidirectional. Corallite walls in “Atlantic faviids” are usually septothecal, with occasional trabeculothecal elements; whereas corallite walls in “Pacific faviids” are usually trabeculothecal or parathecal or they contain abortive septa. Exceptions include subclades of “Pacific faviids” consisting of a) Caulastraea and Oulophyllia (strong secondary axes) and b) Cyphastrea (septothecal walls). Diploastrea has a diagnostic synapticulothecal wall and thick triangular teeth; Montastraea cavernosa is also distinct, possessing both “Pacific faviid” (abortive septa) and “Atlantic faviid” (paddle‐shaped teeth) attributes. The development of secondary axes is similar in traditional Atlantic faviids and mussids, supporting molecular results placing them in the same clade. Subclades of “Pacific faviids” reveal differences in wall structure and the arrangement and distinctiveness of centers of rapid accretion. J. Morphol. 272:66–88, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The Augochlorini Beebe is a New World tribe of bees comprising 663 described species. Relationships among the genera of this monophyletic tribe remain uncertain. Here I provide a comprehensive phylogeny using morphological and molecular information. In all, 54 Augochlorini species plus 16 outgroups and 3017 molecular and 105 morphological characters were analysed. Sequences for four genes were analysed using Bayesian inference, maximum likelihood and parsimony. Morphological characters were taken from a literature review and analysed alone and in combination with molecular data using parsimony. The monophyly of Augochlorini and most genera is confirmed, with divergence of the main lineages of the tribe around 55–20 Ma. Seven clades were supported by most analyses and are here treated as genus‐level groups, as follows (combined analysis topology): (Corynura group, (Chlerogella group, (Rhinocorynura group, (Augochloropsis, (Megaloptidia group, (Neocorynura group, (Augochlora group, Megalopta group))))))). According to this topology, dim‐light foraging and cleptoparasitism arose three times in the tribe. According to my hypothesis, the diversification of Augochlorini may have begun as a response to vicariant events, including the split of the Neotropical/Andean regions and marine transgressions in the Amazon region.  相似文献   

16.
Members of the family Conopidae (Diptera) have been the focus of little targeted phylogenetic research. The most comprehensive test of phylogenetic support for the present subfamily classification of Conopidae is presented here using 66 specimens, including 59 species of Conopidae and seven outgroup taxa. Relationships among subfamily clades are also explored. A total of 6824 bp of DNA sequence data from five gene regions (12S ribosomal DNA, cytochrome c oxidase subunit I, cytochrome b, 28S ribosomal DNA and alanyl‐tRNA synthetase) are combined with 111 morphological characters in a combined analysis using both parsimony and Bayesian methods. Parsimony analysis recovers three shortest trees. Bayesian analysis recovers a nearly identical tree. Five monophyletic subfamilies of Conopidae are recovered. The rarely acknowledged Zodioninae is restored, including the genera Zodion and Parazodion. The genus Sicus is removed from Myopinae. Morphological synapomorphies are discussed for each subfamily and inter‐subfamily clade, including a comprehensive review of the character interpretaions of previous authors. Included are detailed comparative illustrations of male and female genitalia of representatives of all five subfamilies with new morphological interpretation.  相似文献   

17.
Chironius is one of the most speciose genera of the South American colubrid snakes. Although the genus represents a well‐known radiation of diurnal racers, its monophyly, affinities with other Neotropical colubrid genera, and intrageneric relationships are open questions. Here, we present a phylogenetic analysis of Chironius based on a data matrix that combines one nuclear (c‐mos) and two mitochondrial (12S and 16S rRNA) genes with 37 morphological characters derived from scutellation, skull, and hemipenial features. Phylogenetic relationships were inferred using maximum parsimony (MP) and maximum likelihood (ML). Our combined morphological and molecular analyses strongly support the monophyly of the genus Chironius and its sister‐group relationship with a clade formed by the genera Dendrophidion and Drymobius. Phylogenetic relationships within the genus Chironius is still controversial, although five clades are retrieved with medium to strong support. © 2014 The Linnean Society of London  相似文献   

18.
Molecular sequences now overwhelm morphology in phylogenetic inference. Nonetheless, most molecular studies are conducted on a limited number of taxa, as DNA rarely can be analysed from old museum types or fossils. During the last 20 years, more than 150 molecular studies have challenged the current phylogenetic classification of the family Drosophilidae Rondani based on morphological characters. Most studies concerned a single genus, Drosophila Fallén, and included only few representative species from 17 out of the 78 genera of the family. Therefore, these molecular studies were unable to provide an alternative classification scheme. A supermatrix analysis of seven nuclear and one mitochondrial genes (8248 bp) for 33 genera was conducted using outgroups from one calyptrate and four ephydroid families. The Bayesian phylogeny was consistent with previous molecular studies including whole genome sequences and divided the Drosophilidae into four monophyletic clades. Morphological characters, mostly male genitalia, then were compared thoroughly between the four clades and homologous character states were identified. These states were then checked for 70 genera and a revised phylogenetic, family‐group classification for the Drosophilidae is proposed. Two genera –Cladochaeta Coquillett and Diathoneura Duda – of the tribe Cladochaetini Grimaldi are transferred to the family Ephydridae. The Drosophilidae is divided into two subfamilies: Steganinae Hendel (30 genera) and Drosophilinae Rondani (43 genera). A further two genera, Apacrochaeta Duda and Sphyrnoceps de Meijere, are incertae sedis, and Palmophila Grimaldi, is synonymized with Drosophila syn.n. The Drosophilinae is subdivided into two tribes: the re‐elevated Colocasiomyini Okada (nine genera) and Drosophilini Okada. The paraphyly of the genus Drosophila was not resolved to avoid affecting the binomina of important laboratory model species; however, its subgeneric classification was revised in light of molecular and morphological data. Three subgenera, namely Chusqueophila Brncic, Phloridosa Sturtevant and Psilodorha Okada, were synonymized with the subgenus Drosophila (Drosophila) Fallén syns.n. Among the 45 species groups and 5 species complexes of Drosophila (Drosophila), 22 groups and 1 complex were transferred to the subgenus Drosophila (Siphlodora) Patterson & Mainland and 6 groups, 2 species subgroups and 3 complexes are considered incertae sedis within the genus Drosophila. Different morphological characters provide different signals at different phylogenetic scales: thoracic characters (wing venation and presternal shape) discriminate families; grasping and erection‐related characters discriminate subfamilies to tribes; whereas phallic paraphyses, i.e. auxiliary intromittent organs, discriminate genera and Drosophila subgenera. The study shows the necessity of analysing morphological characters within a molecular phylogenetic framework to translate molecular phylogenies into taxonomically‐comprehensive classifications.  相似文献   

19.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

20.
Chromodorid nudibranchs (Chromodorididae) are brightly coloured sea slugs that live in some of the most biodiverse and threatened coral reefs on the planet. However, the evolutionary relationships within this family have not been well understood, especially in the genus Glossodoris. Members of Glossodoris have experienced large‐scale taxonomic instability over the last century and have been the subject of repeated taxonomic changes, in part due to morphological characters being the sole traditional taxonomic sources of data. Changing concepts of traditional generic boundaries based on morphology also have contributed to this instability. Despite recent advances in molecular systematics, many aspects of chromodorid taxonomy remain poorly understood, particularly at the traditional species and generic levels. In this study, 77 individuals comprising 32 previously defined species were used to build the most robust phylogenetic tree of Glossodoris and related genera using mitochondrial genes cytochrome c oxidase subunit I and 16S, and the nuclear gene 28S. Bayesian inference, maximum likelihood, and maximum parsimony analyses verify the most recent hypothesized evolutionary relationships within Glossodoris. Additionally, a pseudocryptic and cryptic species complex within Glossodoris cincta and a pseudocryptic complex within Glossodoris pallida emerged, and three new species of Doriprismatica are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号