首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rechargeable lithium‐ion batteries (LIBs) offer the advantages of having great electrical energy storage and increased continuous and pulsed power output capabilities, which enable their applications in grid energy storage and electric vehicles (EVs). For safety, high power and durability considerations, spinel Li4Ti5O12 is one of the most appealing potential candidate as an anode material for power LIBs due to its excellent cycling stability and thermal stability. However, there are still a number of challenges remaining for Li4Ti5O12 battery applications. Herein, an updated overview of the latest advances in Li4Ti5O12 research is provided and key challenges for its future development (i.e., fast‐charging, specific capacity, swelling, interface chemistry, matching cathode and electrolyte as well as batteries design and manufacturing) are highlighted.  相似文献   

2.
A mesoporous Li4Ti5O12/C nanocomposite is synthesized by a nanocasting technique using the porous carbon material CMK‐3 as a hard template. Modified CMK‐3 template is impregnated with Li4Ti5O12 precursor, followed by heat treatment at 750 °C for 6 h under N2. Li4Ti5O12 nanocrystals of up to several tens of nanometers are successfully synthesized in micrometer‐sized porous carbon foam to form a highly conductive network, as confirmed by field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and nitrogen sorption isotherms. The composite is then evaluated as an anode material for lithium ion batteries. It exhibits greatly improved electrochemical performance compared with bulk Li4Ti5O12, and shows an excellent rate capability (73.4 mA h g?1 at 80 C) with significantly enhanced cycling performance (only 5.6% capacity loss after 1000 cycles at a high rate of 20 C). The greatly enhanced lithium storage properties of the mesoporous Li4Ti5O12/C nanocomposite may be attributed to the interpenetrating conductive carbon network, ordered mesoporous structure, and the small Li4Ti5O12 nanocrystallites that increase the ionic and electronic conduction throughout the electrode.  相似文献   

3.
Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres are synthesized through a three‐step hydrothermal procedure. The average thickness of the Li4Ti5O12 sheets is only ≈(6.6 ± 0.25) nm and the specific surface area of the sample is 178 m2 g?1. When applied into lithium ion batteries as anode materials, the hierarchical Li4Ti5O12 microspheres exhibit high specific capacities at high rates (156 mA h g?1 at 20 C, 150 mA h g?1 at 50 C) and maintain a capacity of 126 mA h g?1 after 3000 cycles at 20 C. The results clearly suggest that the utility of hierarchical structures based on ultrathin nanosheets can promote the lithium insertion/extraction reactions in Li4Ti5O12. The obtained hierarchical Li4Ti5O12 with ultrathin nanosheets and large specific surface area can be perfect anode materials for the lithium ion batteries applied in high power facilities, such as electric vehicles and hybrid electric vehicles.  相似文献   

4.
5.
This work introduces an effective, inexpensive, and large‐scale production approach to the synthesis of a carbon coated, high grain boundary density, dual phase Li4Ti5O12‐TiO2 nanocomposite anode material for use in rechargeable lithium‐ion batteries. The microstructure and morphology of the Li4Ti5O12‐TiO2‐C product were characterized systematically. The Li4Ti5O12‐TiO2‐C nanocomposite electrode yielded good electrochemical performance in terms of high capacity (166 mAh g?1 at a current density of 0.5 C), good cycling stability, and excellent rate capability (110 mAh g?1 at a current density of 10 C up to 100 cycles). The likely contributing factors to the excellent electrochemical performance of the Li4Ti5O12‐TiO2‐C nanocomposite could be related to the improved morphology, including the presence of high grain boundary density among the nanoparticles, carbon layering on each nanocrystal, and grain boundary interface areas embedded in a carbon matrix, where electronic transport properties were tuned by interfacial design and by varying the spacing of interfaces down to the nanoscale regime, in which the grain boundary interface embedded carbon matrix can store electrolyte and allows more channels for the Li+ ion insertion/extraction reaction. This research suggests that carbon‐coated dual phase Li4Ti5O12‐TiO2 nanocomposites could be suitable for use as a high rate performance anode material for lithium‐ion batteries.  相似文献   

6.
Phase transitions play a crucial role in Li‐ion battery electrodes being decisive for both the power density and cycle life. The kinetic properties of phase transitions are relatively unexplored and the nature of the phase transition in defective spinel Li4+xTi5O12 introduces a controversy as the very constant (dis)charge potential, associated with a first‐order phase transition, appears to contradict the exceptionally high rate performance associated with a solid–solution reaction. With the present density functional theory study, a microscopic mechanism is put forward that provides deeper insight in this intriguing and technologically relevant material. The local substitution of Ti with Li in the spinel Li4+xTi5O12 lattice stabilizes the phase boundaries that are introduced upon Li‐ion insertion. This facilitates a subnanometer phase coexistence in equilibrium, which although very similar to a solid solution should be considered a true first‐order phase transition. The resulting interfaces are predicted to be very mobile due to the high mobility of the Li ions located at the interfaces. This highly mobile, almost liquid‐like, subnanometer phase morphology is able to respond very fast to nonequilibrium conditions during battery operation, explaining the excellent rate performance in combination with a first‐order phase transition.  相似文献   

7.
Sodium storage in both solid–liquid and solid–solid interfaces is expected to extend the horizon of sodium‐ion batteries, leading to a new strategy for developing high‐performance energy‐storage materials. Here, a novel composite aerogel with porous Li4Ti5O12 (PLTO) nanofibers confined in a highly conductive 3D‐interconnected graphene framework (G‐PLTO) is designed and fabricated for Na storage. A high capacity of 195 mA h g?1 at 0.2 C and super‐long cycle life up to 12 000 cycles are attained. Electrochemical analysis shows that the intercalation‐based and interfacial Na storage behaviors take effect simultaneously in the G‐PLTO composite aerogel. An integrated Na storage mechanism is proposed. This study ascribes the excellent performance to the unique structure, which not only offers short pathways for Na+ diffusion and conductive networks for electron transport, but also guarantees plenty of PLTO–electrolyte and PLTO–graphene interfacial sites for Na+ adsorption.  相似文献   

8.
9.
Integrated design of both porous structure and crystalline morphology is expected to open up the way to a new class of materials. This report demonstrates new nanostructured Li4Ti5O12 materials with hierarchically porous structures and flower‐like morphologies. Electrochemical studies of the electrodes of Li‐ion and Na‐ion batteries clearly reveal the advantage of nanoarchitectural design of active materials. In addition, the temperature dependence of Na+‐insertion/extraction capacity in relation to Li4Ti5O12 electrodes is for the first time evaluated and it is found that elevation of the cell operating temperature effectively improves the rate capability of the Na‐ion batteries. Based on the new findings, it is suggested that specially designed Li4Ti5O12 materials allow for high‐performance Na‐ion batteries that are available as large‐scale storage devices for applications such as automotive and stationary energy storage.  相似文献   

10.
Sodium‐ion batteries with abundant and low‐cost sodium resources is a promising alternative to Li‐ion batteries in large‐scale energy applications. While the anode materials, due to their insufficient cycling life and insecure voltage, could not still satisfy the market demands, especially in the wide‐temperature fields, here, a high‐crystallinity anode material with post‐spinel structure, namely NaV1.25Ti0.75O4, which always maintains excellent electrochemical performance at the widely variable temperatures, is reported. The results indicate that this anode delivers a high‐safety and ultrastable room‐temperature performance (i.e., an average output voltage of 0.7 V vs Na+/Na and the ultralong cycling life over 10 000 cycles) and good wide‐temperature performance (below 9% capacity variation at 60 and ?20 °C compared to that at 25 °C). These excellent achievements could benefit from the long durability and stability of 1D channels and superfast ion diffusion in a temperature‐dependent range. This finding provides a promising strategy to construct the safe and stable full‐cell prototypes and promotes the wide‐temperature application of sodium‐ion batteries.  相似文献   

11.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

12.
An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon‐coated ZnFe2O4 nanoparticle‐based anode and a LiFePO4‐multiwalled carbon nanotube‐based cathode, both aqueous processed with Na‐carboxymethyl cellulose, are combined, for the first time, in a Li‐ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre‐lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg?1 and 3.72 W kg?1, respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C‐rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity.  相似文献   

13.
14.
The γ phase Li3VO4 which possesses higher ionic conductivity is more preferable for lithium ion batteries, but it is only stable at high temperature and would convert to low temperature β phase spontaneously when cooling down. Here, the phase control of Li3VO4 to stabilize its γ phase in room temperature is successfully mediated by introducing proper Si‐doping, and for the first time the electrochemical performances of γ‐Li3VO4 is investigated. It is found that pure γ‐Li3VO4 can be obtained in a doping ratio of x = 0.05–0.15 in Li3+xV1?xSixO4 with addition of excess Li source in synthesis design. The doping mechanism and the energy changes are investigated in detail by using the first principle calculations, it reveals that an interstitial Li+ is formed with doping of Si4+ in Li3VO4 to balance the system charge. When served as an anode, the Si‐doped γ‐Li3VO4 shows much smoothed Li+ insertion/extraction and enhanced cycle stability with only a single pair of redox peaks, which behaves much different with the complex multicouples of redox peaks in typical β‐Li3VO4. These changes in electrochemical performances implies that γ‐Li3VO4 can effectively accommodate Li+ in an easier and more facile way and relieved structure stress during the charge/discharge process.  相似文献   

15.
The irreversible loss of lithium from the cathode material during the first cycles of rechargeable Li‐ion batteries notably reduces the overall cell capacity. Here, a new family of sacrificial cathode additives based on Li2O:Li2/3Mn1/3O5/6 composites synthesized by mechanochemical alloying is reported. These nanocomposites display record (but irreversible) capacities within the Li–Mn–O systems studied, of up to 1157 mAh g?1, which represents an increase of over 300% of the originally reported capacity in Li2/3Mn1/3O5/6 disordered rock salts. Such a high irreversible capacity is achieved by the reaction between Li2O and Li2/3Mn1/3O5/6 during the first charge, where electrochemically active Li2O acts as a Li+ donor. A 13% increase of the LiFePO4 and LiCoO2 first charge gravimetric capacities is demonstrated by the addition of only 2 wt% of the nanosized composite in the cathode mixture. This result shows the great potential of these newly discovered sacrificial additives to counteract initial losses of Li+ ions and improve battery performance.  相似文献   

16.
17.
Despite enormous efforts devoted to the development of high‐performance batteries, the obtainable energy and power density, durability, and affordability of the existing batteries are still inadequate for many applications. Here, a self‐standing nanostructured electrode with ultrafast cycling capability is reported by in situ tailoring Li4Ti5O12 nanocrystals into a 3D carbon current collector (derived from filter paper) through a facile wet chemical process involving adsorption of titanium source, boiling treatment, and subsequent chemical lithiation. This 3D architectural electrode is charged/discharged to ≈60% of the theoretical capacity of Li4Ti5O12 in ≈21 s at 100 C rate (17 500 mA g?1 ), which also shows stable cycling performance for 1000 cycles at a cycling rate of 50 C. Additionally, modified 3D carbon current collector with much smaller pores and finer fiber diameters are further used, which significantly improve the specific capacity based on the weight of the entire electrode. These novel electrodes are promising for high‐power applications such as electric vehicles and smart grids. This unique electrode architecture also simplifies the electrode fabrication process and significantly enhances current collection efficiency (especially at high rate). Further, the conceptual electrode design is applicable to other oxide electrode materials for high‐performance batteries, fuel cells, and supercapacitors.  相似文献   

18.
19.
Nanocrystals of Li4Ti5O12 (LTO) have been prepared by processing an ethanol‐toluene solution of LiOEt and Ti(OiPr)4 using a carbon black template. The mechanism of crystal growth has been tracked by SEM and TEM microscopies. The resulting nanocrystals grown using the carbon template (C‐LTO) show less aggregation than materials prepared from solution without the template (S‐LTO), which is reflected in higher surface area (27 m2/g) and concomitantly smaller particle size (58 nm) for C‐LTO compared to 20 m2/g and 201 nm for S‐LTO. Electrochemically, thin‐film electrodes composed of C‐LTO demonstrate reversible cycling, storing ~160 mAh/g at both 1 C (175 mA/g) and 10 C current. Important is that resistance to charge transfer between the C‐LTO nanocrystals and added conducting carbon is 3 times smaller than that for S‐LTO. Accordingly, C‐LTO shows excellent rate capability, maintaining an energy‐storage capacity >150 mAh/g even at 100 C current. These characteristics solidify C‐LTO a suitable replacement for carbon as a Li‐ion battery anode.  相似文献   

20.
The templating approach is a powerful method for preparing porous electrodes with interconnected well‐controlled pore sizes and morphologies. The optimization of the pore architecture design facilitates electrolyte penetration and provides a rapid diffusion path for lithium ions, which becomes even more crucial for thick porous electrodes. Here, NaCl microsize particles are used as a templating agent for the fabrication of 1 mm thick porous LiFePO4 and Li4Ti5O12 composite electrodes using spark plasma sintering technique. These sintered binder‐free electrodes are self‐supported and present a large porosity (40%) with relatively uniform pores. The electrochemical performances of half and full batteries reveal a remarkable specific areal capacity (20 mA h cm?2), which is 4 times higher than those of 100 µm thick electrodes present in conventional tape‐casted Li–ion batteries (5 mA h cm?2). The 3D morphological study is carried out using full field transmission X‐ray microscopy in microcomputed tomography mode to obtain tortuosity values and pore size distributions leading to a strong correlation with their electrochemical properties. These results also demonstrate that the coupling between the salt templating method and the spark plasma sintering technique turns out to be a promising way to fabricate thick electrodes with high energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号