首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling.  相似文献   

2.
猪δ冠状病毒(porcine deltacoronavirus,PDCoV)是目前新发现的唯一一种感染哺乳动物的δ冠状病毒。PDCoV主要感染猪的小肠,特别是空肠和回肠,造成小肠绒毛上皮细胞萎缩,引起严重的萎缩性肠炎,临床症状主要表现为新生仔猪水样腹泻、呕吐和脱水死亡,给养猪业造成很大的经济损失。2014年以来全球暴发的仔猪腹泻中,PDCoV单一感染检出率占有一定的比例,还与其他猪冠状病毒存在较高比例的共感染现象。随着PDCoV毒株的基因组测序完成和病毒的分离成功,以及病毒与宿主互作研究的推进,对该病毒有了更多的认知。本文根据现有的文献报道,结合本课题组的研究进展,对猪δ冠状病毒的流行、基因组结构的遗传多样性、病毒感染受体和对宿主先天免疫应答调控机制的研究进展进行了综述,以帮助相关人员对PDCoV有全面和深入的了解。  相似文献   

3.
Lacking an adaptive immune system, plants largely rely on plasma membrane‐resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post‐translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis.  相似文献   

4.
The fine‐tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non‐coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host‐directed anti‐mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections.  相似文献   

5.
6.
甲型流感病毒作为引起人类和动物急性呼吸道传染病的一个主要病原体,在世界范围内广泛流行。研究表明,甲型流感病毒感染宿主后会诱导宿主的天然免疫应答。甲型流感病毒感染可引起Toll样受体(Toll like receptors,TLRs)和RIG-Ⅰ样受体(RIG-Ⅰ like receptors,RLRs)等宿主模式识别受体介导的抗病毒信号通路的活化,并在多种机制调控下诱导干扰素和其他细胞因子的表达,如Ⅰ型干扰素、Ⅲ型干扰素等,从而启动干扰素刺激基因(Interferon stimulated genes,ISGs)的转录及其抗病毒蛋白的表达,进而实现抗病毒作用。本文就甲型流感病毒感染与干扰素介导的天然免疫应答相关的信号通路和调控机制进行综述。  相似文献   

7.
Recent studies have suggested that lipopolysaccharides (LPS) induce nitric oxide (NO) production and defense gene expression in plants. Our current work investigated the signaling mechanism of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) in LPS-induced innate immunity of Arabidopsis (Arabidopsis thaliana). We have provided evidence that LPS-elicited NO generation as well as increased antioxidant enzyme activities capable of maintaining the redox state could be important to protect plants against oxidative damage from pathogen attack. In addition, LPS-activated defense responses, including callose deposition and defense-related gene expression, are regulated through an NPR1-dependent signaling pathway. Our results contribute to elucidation of the signaling mechanism of NO and highlight an important role of NPR1 in modulating LPS-triggered innate immunity in plants. However, further research is necessary to clarify the cross-talk between mitochondria and NO on activating LPS-induced defense responses, and the regulatory mechanism of NO in LPS-induced innate immunity needs further improvement.  相似文献   

8.
Recent research findings clearly indicate that lysin motif (LysM)-containing cell surface receptors are involved in the recognition of specific oligosaccharide elicitors (chitin and peptidoglycan), which trigger an innate immunity response in plants. These receptors are either LysM-containing receptor-like kinases (LYKs) or LysM-containing receptor proteins (LYPs). In Arabidopsis, five LYKs (AtCERK1/AtLYK1 and AtLYK2–5) and three LYPs (AtLYP1–3) are likely expressed on the plasma membrane. In this review, we summarize recent research results on the role of these receptors in plant innate immunity, including the recent structural characterization of AtCERK1 and composition of the various receptor complexes in Arabidopsis.  相似文献   

9.
植物受体激酶BAK1在多个信号转导路径上独立的多角色功能,成为拟南芥受体激酶610个成员中最受关注的成员之一。BAK1是一个典型的富亮氨酸重复序列的跨膜受体激酶,属于LRR-RKⅡ家族,在结构上由胞外结合域、跨膜区以及胞内激酶结构域三部分构成。最初BAK1被鉴定为BRI1和FLS2的双元受体,分别参与调控植物油菜素内酯BR的信号转导及病原相关模式分子PAMPs引发的免疫反应,近期又有多个BAK1的互作组分被相继发现,如EFR、AvrPto、PEPR1/2、PUB13、BIR1、BON1等。该文从BAK1的分子结构,BAK1所在SERKs家族的功能冗余,对油菜素内酯路径的信号调控,参与病菌识别防御反应的先天免疫和调控细胞凋亡等方面对近年来国内外的相关研究进展进行综述,以明确目前研究所面临的问题。  相似文献   

10.
肠道病毒属于小核糖核酸病毒科,包括脊髓灰质炎病毒等多种重要人类病原体,已成为全球公共卫生安全的重大威胁之一。固有免疫是机体早期抵御病毒感染的重要防线。不同肠道病毒在进化中已经具备了多种途径躲避免疫识别或诱导固有免疫系统失活。本文重点对肠道病毒调控宿主固有免疫的相关分子机制进行综述,系统整理了肠道病毒逃避干扰素依赖与干扰素非依赖的抗病毒固有免疫防御的分子特征与作用规律,为肠道病毒致病机制的探究和抗病毒药物的研发提供参考。  相似文献   

11.
Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5′-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.  相似文献   

12.
进化基因组学在昆虫天然免疫研究中的应用前景   总被引:2,自引:0,他引:2  
整合基因组学和进化论而发展起来的进化基因组学正在逐渐改变传统昆虫学的研究模式。对昆虫天然免疫的研究已不再仅仅依靠实验学方法。3种全基因组序列被破译的模式昆虫(黑腹果蝇、冈比亚按蚊和意大利蜜蜂)将为这些研究引入新的方向。该文将以模式昆虫为代表,简要介绍如何利用进化上的趋同和趋异概念建立一特定昆虫物种的抗微生物肽基因蓝图;以及如何利用基因组数据和进化分析方法鉴定控制昆虫Toll信号通路关键组分Spatzle配体的进化优势位点。  相似文献   

13.
Although fish immunology has progressed in the last few years, the contribution of the normal endogenous microbiota to the overall health status has been so far underestimated. In this context, the establishment of a normal or protective microbiota constitutes a key component to maintain good health, through competitive exclusion mechanisms, and has implications for the development and maturation of the immune system. The normal microbiota influences the innate immune system, which is of vital importance for the disease resistance of fish and is divided into physical barriers, humoral and cellular components. Innate humoral parameters include antimicrobial peptides, lysozyme, complement components, transferrin, pentraxins, lectins, antiproteases and natural antibodies, whereas nonspecific cytotoxic cells and phagocytes (monocytes/macrophages and neutrophils) constitute innate cellular immune effectors. Cytokines are an integral component of the adaptive and innate immune response, particularly IL-1 beta, interferon, tumor necrosis factor-alpha, transforming growth factor-beta and several chemokines regulate innate immunity. This review covers the innate immune mechanisms of protection against pathogens, in relation with the installation and composition of the normal endogenous microbiota in fish and its role on health. Knowledge of such interaction may offer novel and useful means designing adequate therapeutic strategies for disease prevention and treatment.  相似文献   

14.
固有免疫系统通过模式识别受体识别病原微生物表面的病原相关分子模式启动固有免疫反应,经级联信号转导,激活下游转录因子NF-κB和干扰素调节因子IRFs,进而产生炎性细胞因子以及Ⅰ型干扰素,抵抗病原微生物感染。TANK结合激酶1 (TANK binding kinase 1,TBK1) 作为一个中心节点蛋白,参与多条固有免疫信号通路的传导,可同时激活NF-κB和IRFs,是机体抗感染过程中关键的蛋白激酶。TBK1的精准调控对维持机体免疫稳态、抵抗病原体入侵至关重要。文中综述了TBK1在固有免疫应答中的作用及其泛素化调控机制,以期为病原体感染及自身免疫病的临床治疗提供理论基础。  相似文献   

15.
《Cell》2023,186(15):3261-3276.e20
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.  相似文献   

18.
The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the acti-vation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modifica-tion but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.  相似文献   

19.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

20.
The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi–Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR–Cas9 gene KO or lentiviral viral protein X–mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2–infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号