首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
4.
Dragonflies are colorful insects, and recent RNA sequencing studies have identified a number of candidate genes potentially involved in their color pattern formation and color vision. However, functional aspects of such genes have not been assessed due to the lack of molecular genetic tools applicable to dragonflies. We established an electroporation-mediated RNA interference (RNAi) procedure using the tiny dragonfly Nannophya pygmaea Rambur, 1842 (Odonata: Libellulidae) that targets the multicopper oxidase 2 gene (MCO2; also known as laccase2 gene) responsible for cuticular pigmentation in many insects. RNA sequencing of N. pygmaea and genomic survey of the dragonfly Ladona fulva identified four multicopper oxidase family genes: MCO1, MCO2, MCO3 and multicopper oxidase-related protein gene (MCORP). In N. pygmaea, MCO2 was specifically expressed around the cuticular pigmentation period, whereas MCO1 was constantly expressed. MCORP was expressed at adult stages, and MCO3 was scarcely expressed. When we applied in vivo electroporation, final instar larvae injected with MCO2 small interfering RNA became adults with patchy unpigmented regions. RNAi without in vivo electroporation did not affect cuticular pigmentation, suggesting that dragonflies do not show a systemic RNAi response. These results indicate that MCO2 is required for cuticular pigmentation across diverse insects, and highlight the usefulness of the electroporation-mediated RNAi method in dragonflies.  相似文献   

5.
6.
7.
Anthocyanin pigmentation of various organs develops during plant ontogeny in response to adverse and damaging abiotic and biotic stressors (environmental factors). Using the monosome method, the genes responsible for anther and culm anthocyanin pigmentation (Pan1 and Pc2, respectively) were localized to 7D chromosome in introgressive lines from crosses between common wheat Triticum aestivum L. and the species Triticum timopheevii Zhuk. Genetic analysis of ten common wheat genotypes using testers carrying genes Pan1, Pc1 and Pc2 showed that these genotypes contained Pan1 and Pc2 genes. Visual examination of plants from 70 and 76 varieties of respectively winter and spring common wheat revealed anthocyanin pigmentation of anthers and culms in 36 varieties. Pan1 and Pc2 genes were presumably introduced into common wheat from Aegilops tauschii (Eig.) Tzvel., a donor of the D genome.  相似文献   

8.
The aim of this study was to examine the effect of abscisic acid (ABA), sucrose, and auxin on grape fruit development and to assess the mechanism of these three factors on the grape fruit ripening process. Different concentrations of ABA, sucrose, and auxin were used to treat the grape fruit, and the ripening-related indices, such as physiological and molecular level parameters, were analyzed. The activity of BG protein activity was analyzed during the fruit development. Sucrose, ABA, and auxin influenced the grape fruit sugar accumulation in different ways, as well as the volatile compounds, anthocyanin content, and fruit firmness. ABA and sucrose induced, but auxin blocked, the ripening-related gene expression levels, such as softening genes PE, PG, PL, and CELL, anthocyanin genes DFR, CHI, F3H, GST, CHS, and UFGT, and aroma genes Ecar, QR, and EGS. ABA, sucrose, and glucose induced the fruit dry weight accumulation, and auxin mainly enhanced fruit dry weight through seed weight accumulation. In the early development of grape, starch was the main energy storage; in the later, it was glucose and fructose. Sucrose metabolism pathway-related gene expression levels were significant for glucose and fructose accumulation. BG protein activity was important in the regulation of grape ABA content levels. ABA plays a core role in the grape fruit development; sucrose functions in fruit development through two pathways: one was ABA dependent, the other ABA independent. Auxin blocked ABA accumulation to regulate the fruit development process.  相似文献   

9.
10.
The βNACtes gene family of the Drosophila melanogaster genome provides a model for investigating the mechanisms of the molecular evolution of recently evolved genes. The βNACtes genes code for proteins that are homologous to the subunit of the nascent polypeptide-associated complex (NAC), are expressed exclusively in the testis, and are localized on the X chromosome as two-gene clusters and one separate copy. Population polymorphism of the βNACtes genes was studied using several wild-type D. melanogaster stocks, and βNACtes paralogs were compared with each other. A heterogeneous pattern was observed for βNACtes polymorphism: the 3′ genes of the two-gene clusters were low polymorphic, whereas, separate, the βNACtes1 gene was the most variable. The 5′ βNACtes copies of the two-gene tandems were practically identical, whereas the 3′ βNACtes copies were highly diverged. Hence, local gene conversion was assumed to provide for the selective homogenization of the 5′ genes. A comparison of the βNACtes paralogs showed that the majority of amino acid differences were in the N-terminal region, containing the βNAC domain. The McDonald-Kreitman test was used to analyze the divergence of βNACtes paralogs and implicated positive selection in the evolution of the βNACtes gene family.  相似文献   

11.
The genus Fusarium, including multiple strains in the Gibberella fujikuroi species complex (GFC), is well known for its production of diverse secondary metabolites. F. fujikuroi, associated with the “bakanae” disease of rice, is an active producer of gibberellins (GAs), a wide class of plant hormones. In addition to some members of the GFC, the GA biosynthetic gene cluster, or parts of it, occurs also in some isolates of the closely related species of F. oxysporum, which does not belong to the GFC. However, production of GAs has never been observed in any F. oxysporum strain. In this study, we report on the GA biosynthetic activity in an orchid-associated F. oxysporum strain by transforming a cosmid with the entire F. fujikuroi GA gene cluster. Southern and Northern blot analyses confirmed not only the integration of the entire gene cluster into the genome but also the active expression of the seven GA biosynthetic genes under nitrogen-limiting conditions. The transformants produced GAs at levels similar to those of F. fujikuroi. These data show that the regulatory network for expression of GA genes is fully active in the F. oxysporum background.  相似文献   

12.
13.
The red-necked phalarope is a wonderful species with specific morphological characters and lifestyles. Mitochondrial genomes, encoding necessary proteins involved in the system of energy metabolism, are important for the evolution and adaption of species. In this study, we determined the complete mitogenome sequence of Phalaropus lobatus (Charadriiformes: Scolopacidae). The circular genome is 16714 bp in size, containing 13 PCGs, two ribosomal RNAs and 22 tRNAs and a high AT-rich control region. The AT skew and GC skew of major strand is positive and negative respectively. Most of PCGs are biased towards A-rich except ND1. A codon usage analysis shows that 3 start codons (ATG, GTG and ATA), 4 stop codons (TAA, TAG, AGG, AGA) and two incomplete terminate codons (T–). Twenty two transfer RNAs have the typical cloverleaf structure, and a total of ten base pairs are mismatched throughout the nine tRNA genes. The phylogenetic tree based on 13 PCGs and 2 rRNA genes indicates that monophyly of the family and genus Phalaropus is close to genus Xenus plus Tringa. The analysis of selective pressure shows 13 protein-coding genes are evolving under the purifying selection and P. lobatus is different from other Scolopacidae species on the selective pressure of gene ND4. This study helps us know the inherent mechanism of mitochondrial structure and natural selection.  相似文献   

14.

Background

Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.

Results

We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenario that reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to a ProtoHox cluster was involved in a segmental tandem duplication event that generated an array of all Hox-like genes, referred to as the 'coupled' cluster. A chromosomal breakage within this cluster explains the current composition of the extended Hox cluster (with Evx, Hox and Mox genes) and the ParaHox cluster.

Conclusions

Most studies dealing with the origin and evolution of Hox and ParaHox clusters have not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and the available linkage data in mammalian genomes support an evolutionary scenario in which an ancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of a large genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plus the cluster-neighbors Evx and Mox. The large 'coupled' Hox-like cluster EvxHox/MoxParaHox was subsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating the ParaHox cluster.
  相似文献   

15.

Background

Liriodendron is a genus of Magnoliaceae, which consists of two relict species, Liriodendron chinense and L. tulipifera. Although the morphologies are highly similar, the two species exhibit different adaptive capacity. Dehydrins (DHNs) are abiotic stresses resistant proteins in planta, which are associated with adaptive evolution. To better understand the evolution divergence between L. chinense and L. tulipifera and how DHN genes are associated with adaptation evolution, we firstly investigated the DNA polymorphisms of the LcDHN-like gene in 21?L. chinense and 6?L. tulipifera populations.

Results

A 707?bp LcDHN-like gene was cloned, which included a 477?bp open reading frame (ORF) and coding 158 amino acids. 311 LcDHN-like gDNA sequences were obtained from 70?L. chinense and 35?L. tulipifera individuals. The AMOVA and phylogenetic relationship analysis showed significant differences between the two species. A higher genetic diversity was observed in L. tulipifera compared to L. chinense, in consistent with the higher adaptive capacity of L. tulipifera. Our data also suggested that the LcDHN-like genes’ polymorphisms were under neutral mutation and purifying selection model in the L. chinense and L. tulipifera populations, respectively. The distinct expanding range and rate between the two species, haplotypes shared only in L.chinense’s nearby populations, and wide dispersals in L. tulipifera could contribute to the obscure east-west separation in L. chinense and entirely unordered phylogeny in L. tulipifera. The completely separated nonsynonymous substitution at position 875 and the higher range scope of aliphatic index in L. tulipifera populations may be related with its higher adaptive capacity. Taken together, our study suggests LcDHN-like gene is a potential mark gene responsible for adaptive evolution divergence in Liriodendron.

Conclusions

Significant differences and completely distinct haplogroups between L. chinense and L. tulipifera showed that the two species have evolved into different directions. The more widely distribution, earlier haplogroups divergence events, and richer SNPs variations in L. tulipifera could imply its stronger adaptation in this species. And potential effect of the allelic variations in LcDHN-like gene may reflect the difference of water stress and chill tolerance between L. chinense and L. tulipifera, which could provide some information for further adaption evolution studies of Liriodendron.
  相似文献   

16.
17.
18.

Key message

pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress.

Abstract

Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.
  相似文献   

19.
20.
GDSL-type esterase/lipase (GELP) is mainly characterized by a conserved GDSL domain at N terminus, and is widely found in all living species, both prokaryotes and eukaryotes. GELP gene family consists of a wide range of members playing important roles in plant physiological processes, such as development, stress responses, and functional divergences. In our study, 597 GELP genes were identified from six Rosaceae genomes (i.e., Fragaria vesca, Prunus persica, Prunus avium, Prunus mume, Pyrus bretschneideri, and Malus domestica) by a comprehensive analysis. All GELP genes were further divided into ten subfamilies based on phylogenetic tree analysis. Subfamily D and subfamily E are the two largest subfamilies. Microcollinearity analysis suggested that WGD/segmental events contribute to the expansion of the GELP gene family in M. domestica and P. bretschneideri compared to F. vesca, P. persica, P. avium, and P. mume. Some PbGELPs were expressed during the fruit development of P. bretschneideri and pollen tubes, indicating their activity in these tissues. The expression divergence of PbGELP duplication gene pairs suggests that many mutations were allowed during evolution, although the structure of GELP genes was highly conserved. The current study results provided the feasibility to understand the expansion and evolution patterns of GELP in Rosaceae genomes, and highlight the function during P. bretschneideri fruits and pollen tubes development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号