首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High photon energy losses limit the open‐circuit voltage (VOC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the VOC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha‐sexithiophene (α‐6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the VOC of an α‐6T/SubNc/SubPc fullerene‐free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D–A interface. By accurately measuring the optical gap (Eopt) and the energy of the charge‐transfer state (ECT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. EoptqVOC losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the VOC‐optimized devices, the low‐energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low‐voltage losses can be combined with a high EQE in organic photovoltaic devices.  相似文献   

2.
To realize efficient photoconversion in organic semiconductors, photogenerated excitons must be dissociated into their constituent electronic charges. In an organic photovoltaic (OPV) cell, this is most often accomplished using an electron donor–acceptor (D–A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo efficient bulk‐ionization and generate photocurrent as a result of the large built‐in field created by the MoOx/C60 interface. Here, it is demonstrated that bulk ionization processes also contribute to the short‐circuit current density (JSC) and open‐circuit voltage (VOC) in bulk heterojunction (BHJ) OPVs with fullerene‐rich compositions. Temperature‐dependent measurements of device performance are used to distinguish dissociation by bulk‐ionization from charge transfer at the D–A interface. In optimized fullerene‐rich BHJs based on the D–A pairing of boron subphthalocyanine chloride (SubPc)–C60, bulk‐ionization is found to be responsible for ≈16% of the total photocurrent, and >30% of the photocurrent originating from C60. The presence of bulk‐ionization in C60 also impacts the temperature dependence of VOC, with fullerene‐rich SubPc:C60 BHJ OPVs showing a larger VOC than evenly mixed BHJs. The prevalence of bulk‐ionization processes in efficient, fullerene‐rich BHJs underscores the need to include these effects when engineering device design and morphology in OPVs.  相似文献   

3.
The design and performance of solar cells based on InP grown by the nonepitaxial thin‐film vapor–liquid–solid (TF‐VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p‐InP absorber layer, n‐TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p‐doping process for TF‐VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open‐circuit voltage (VOC) of 692 mV, short‐circuit current (JSC) of 26.9 mA cm?2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p‐InP.  相似文献   

4.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

5.
Today's perovskite solar cells (PSCs) are limited mainly by their open‐circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity‐dependent measurements of the quasi‐Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin‐type PSCs with efficiencies above 20%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley‐Queisser theory. This has far‐reaching implications for the applicability of some well‐established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift‐diffusion simulations, the intensity dependence of the QFLS, the QFLS‐VOC offset and the ideality factor are consistently explained by trap‐assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS‐VOC relation is of great importance.  相似文献   

6.
There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open‐circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide‐based acceptor molecule, 4,7‐bis(4‐(N‐hexyl‐phthalimide)vinyl)benzo[c]1,2,5‐thiadiazole (HPI‐BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75–90% for polymer‐fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer‐fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI‐BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected.  相似文献   

7.
Quantum‐dot (QD) photovoltaics (PVs) offer promise as energy‐conversion devices; however, their open‐circuit‐voltage (VOC) deficit is excessively large. Previous work has identified factors related to the QD active layer that contribute to VOC loss, including sub‐bandgap trap states and polydispersity in QD films. This work focuses instead on layer interfaces, and reveals a critical source of VOC loss: electron leakage at the QD/hole‐transport layer (HTL) interface. Although large‐bandgap organic materials in HTL are potentially suited to minimizing leakage current, dipoles that form at an organic/metal interface impede control over optimal band alignments. To overcome the challenge, a bilayer HTL configuration, which consists of semiconducting alpha‐sexithiophene (α‐6T) and metallic poly(3,4‐ethylenedioxythiphene) polystyrene sulfonate (PEDOT:PSS), is introduced. The introduction of the PEDOT:PSS layer between α‐6T and Au electrode suppresses the formation of undesired interfacial dipoles and a Schottky barrier for holes, and the bilayer HTL provides a high electron barrier of 1.35 eV. Using bilayer HTLs enhances the VOC by 74 mV without compromising the JSC compared to conventional MoO3 control devices, leading to a best power conversion efficiency of 9.2% (>40% improvement relative to relevant controls). Wider applicability of the bilayer strategy is demonstrated by a similar structure based on shallow lowest‐unoccupied‐molecular‐orbital (LUMO) levels.  相似文献   

8.
The field of organic photovoltaics has recently produced highly efficient single‐junction cells with power conversion efficiency >10%, yet the open‐circuit voltage (VOC) remains relatively low in many high performing systems. An accurate picture of the density of states (DOS) in working solar cells is crucial to understanding the sources of voltage loss, but remains difficult to obtain experimentally. Here, the tail of the DOS is characterized in a number of small molecule bulk heterojunction solar cells from the charge density dependence of VOC, and is directly compared to the disorder present within donor and acceptor components as measured by Kelvin probe. Using these DOS distributions, the total energy loss relative to the charge transfer state energy (ECT)—ranging from ≈0.5 to 0.7 eV—is divided into contributions from energetic disorder and from charge recombination, and the extent to which these factors limit the VOC is assessed.  相似文献   

9.
“The Same‐Acceptor‐Strategy” (SAS) adopts benzotriazole (BTA)‐based p‐type polymers paired with a new BTA based non‐fullerene acceptor BTA13 to minimize the trade‐off between the open‐circuit voltage (VOC) and short circuit current (JSC). The fluorination and sulfuration are introduced to lower the highest occupied molecular orbitals (HOMO) of the polymers. The fluorinated polymer of J52‐F shows the higher power conversion efficiency (PCE) of 8.36% than the analog polymer of J52, benefited from a good balance between an improved VOC of 1.18 V and a JSC of 11.55 mA cm?2. Further adding alkylthio groups on J52‐F, the resulted polymer, J52‐FS, exhibits the highest VOC of 1.24 V with a decreased energy loss of 0.48 eV, compared with 0.67 eV for J52 and 0.54 eV for J52‐F. However, J52‐FS shows an inferior PCE (3.84%) with a lower JSC of 6.74 mA cm?2, because the small ΔEHOMO between J52‐FS and BTA13 (0.02 eV) gives rise to the inefficient hole transfer and high charge recombination, as well as low carrier mobilities. The results of this study clearly demonstrate that the introduction of different atoms in p‐type polymers is effective to improve the SAS and realize the high (VOC) and PCE.  相似文献   

10.
The value and temperature dependence of the ideality factor provides essential information about the dominant recombination route in solar cells. This study presents experimental results of accurate ideality factor determination for representative organic photovoltaic cells (OPV) evaluated at different temperatures over a large current density regime. It is noted that standard dark IV curves strongly deviate from those obtained by evaluations based on short circuit current density (J SC)–open circuit voltage (V OC) pairs. This is attributed to the applied external voltage in a dark IV measurement not being representative of internal chemical potential, particularly at lower temperatures. Complementary electroluminescence measurements attest that the current density dependence of the ability of the solar cell to emit light is better correlated to the series resistance free ideality factor. For the studied set of OPV devices it is observed that the ideality factors are quite low, and with very weak temperature dependence. The J SCV OC method to determine ideality factors further allows good estimates of activation energies as well as recombination current prefactors J 00. The findings imply that the principal OPV non‐radiative recombination mechanism is not recombination of free carriers with trapped carriers in an exponential density of tail states as previously reported.  相似文献   

11.
In organic photovoltaic (PV) cells, the well‐established donor‐acceptor (D/A) concept enabling photo‐induced charge transfer between two partners with suitable energy level alignment has proven extremely successful. Nevertheless, the introduction of such a heterojunction is accompanied with additional energy losses as compared to an inorganic homojunction cell, owing to the presence of a charge‐transfer (CT) state at the D/A interface. Based on the principle of detailed balance, a modified Shockley‐Queisser theory is developed including the essential effects of interfacial CT states, that allows for a quantitative assessment of the thermodynamic efficiency limits of molecular D/A solar cells. Key parameters, apart from the optical gap of the absorber material, entering the model are the energy (ECT) and relative absorption strength (αCT) of the CT state. It is demonstrated how the open‐circuit voltage (VOC) and thus the power conversion efficiency are affected by different parameter values. Furthermore, it is shown that temperature dependent device characteristics can serve to determine the CT energy, and thus the upper limit of VOC for a given D/A combination, as well as to quantify non‐radiative recombination losses. The model is applied to diindenoperylene (DIP)‐based photovoltaic devices, with open‐circuit voltages between 0.9 and 1.4 V, depending on the partner, that have recently been reported.  相似文献   

12.
In organic solar cells (OSCs), the energy of the charge‐transfer (CT) complexes at the donor–acceptor interface, E CT, determines the maximum open‐circuit voltage (V OC). The coexistence of phases with different degrees of order in the donor or the acceptor, as in blends of semi‐crystalline donors and fullerenes in bulk heterojunction layers, influences the distribution of CT states and the V OC enormously. Yet, the question of how structural heterogeneities alter CT states and the V OC is seldom addressed systematically. In this work, we combine experimental measurements of vacuum‐deposited rubrene/C60 bilayer OSCs, with varying microstructure and texture, with density functional theory calculations to determine how relative molecular orientations and extents of structural order influence E CT and V OC. We find that varying the microstructure of rubrene gives rise to CT bands with varying energies. The CT band that originates from crystalline rubrene lies up to ≈0.4 eV lower in energy compared to the one that arises from amorphous rubrene. These low‐lying CT states contribute strongly to V OC losses and result mainly from hole delocalization in aggregated rubrene. This work points to the importance of realizing interfacial structural control that prevents the formation of low E CT configurations and maximizes V OC.  相似文献   

13.
A terthieno[3,2‐b]thiophene ( 6T ) based fused‐ring low bandgap electron acceptor, 6TIC , is designed and synthesized for highly efficient nonfullerene solar cells. The chemical, optical, and physical properties, device characteristics, and film morphology of 6TIC are intensively studied. 6TIC shows a narrow bandgap with band edge reaching 905 nm due to the electron‐rich π‐conjugated 6T core and reduced resonance stabilization energy. The rigid, π‐conjugated 6T also offers lower reorganization energy to facilitate very low VOC loss in the 6TIC system. The analysis of film morphology shows that PTB7‐Th and 6TIC can form crystalline domains and a bicontinuous network. These domains are enlarged when thermal annealing is applied. Consequently, the device based on PTB7‐Th : 6TIC exhibits a high power conversion efficiency (PCE) of 11.07% with a high JSC > 20 mA cm?2 and a high VOC of 0.83 V with a relatively low VOC loss (≈0.55 V). Moreover, a semitransparent solar cell based on PTB7‐Th : 6TIC exhibits a relatively high PCE (7.62%). The device can have combined high PCE and high JSC is quite rare for organic solar cells.  相似文献   

14.
Electron‐filtering compound buffer layers (EF‐CBLs) improve charge extraction in organic photovoltaic cells (OPVs) by blending an electron‐conducting fullerene with a wide energy gap exciton‐blocking molecule. It is found that devices with EF‐CBLs with high glass transition temperatures and a low crystallization rate produce highly stable morphologies and devices. The most stable OPVs employ 1:1 2,2′,2″‐(1,3,5‐benzenetriyl tris‐[1‐phenyl‐1H‐benzimidazole] TPBi:C70 buffers that lose <20% of their initial power conversion efficiency of 6.6 ± 0.6% after 2700 h under continuous simulated AM1.5G illumination, and show no significant degradation after 100 days of outdoor aging. When exposed to 100‐sun (100 kW m?2) concentrated solar illumination for 5 h, their power conversion efficiencies decrease by <8%. Moreover, it is found that the reliability of the devices employing stable EF‐CBLs has either reduced or no dependence on operating temperature up to 130 °C compared with BPhen:C60 devices whose fill factors show thermally activated degradation. The robustness of TPBi:C70 devices under extreme aging conditions including outdoor exposure, high temperature, and concentrated illumination is promising for the future of OPV as a stable solar cell technology.  相似文献   

15.
Efficient vacuum‐deposited tandem organic photovoltaic cells (TOPVs) composed of pristine fullerenes as the acceptors and two complementary absorbing donors, 2‐((2‐(5‐(4‐(diphenylamino)phenyl)thieno[3,2‐b]thiophen‐2‐yl)thiazol‐5‐yl)methylene)malononitrile for the visible absorption and 2‐((7‐(5‐(dip‐tolylamino)thiophen‐2‐yl)benzo[c]‐[1,2,5]thiadiazol‐4‐yl)methylene)malononitrile for the near‐infrared absorption, are reported. Two subcells are connected by the interconnection unit (ICU) composed of electron‐transporting layer/metal/p‐doped hole‐transporting layer. The p‐doped layer in the ICU enables increasing the short‐circuit current density (J SC) of TOPVs by tuning the relative position of subcells in the tandem devices to have the maximum optical field distribution response, which is well matched with theoretical calculation. Moreover, the introduction of the doped layer benefits to the higher fill factor (FF) of the consisting subcells without losing open‐circuit voltage (V OC) even with the thick active layers. As a result, power conversion efficiency of 9.2% is achieved with higher FF of 0.62 than that of single‐junction subcells (0.54, 0.57), J SC of 8.7 mA cm?2, and V OC of 1.71 V using 80 nm thick active layers in both subcells.  相似文献   

16.
Generally, highly efficient organic solar cells require both a high open‐circuit voltage (VOC) and a high short‐circuit current density (JSC). Reducing the energy loss (Eloss) is an effective way to achieve a high VOC without compromising the photocurrent, which is ideal for enhancing the power conversion efficiencies (PCEs). Herein, a new chlorinated nonfullerene acceptor (ITC‐2Cl) with chlorinated thiophene‐fused end groups is developed. In comparison with the unchlorinated counterpart (ITCPTC), the introduction of Cl improves not only the electronic properties by redshifting the absorption spectra and deepening the lowest unoccupied molecular orbital energy levels, but also the molecular packing and thus thin‐film morphology. The PM6:ITC‐2Cl‐based device yields a significantly higher PCE (13.6%) with a lower Eloss (0.67 eV) than the ITCPTC‐based device (PCE of 12.3% with Eloss of 0.70 eV). More importantly, compared to the archetypal nonfullerene acceptors such as IT‐4F (PCE of 12.9% with Eloss of 0.73 eV) and IT‐4Cl (PCE of 12.7% with Eloss of 0.76 eV), the ITC‐2Cl‐based device shows a higher PCE and a lower Eloss. These results demonstrate that the chlorinated thiophene‐fused end group is a promising candidate for a high‐performance nonfullerene acceptors with low energy loss.  相似文献   

17.
Colloidal quantum dot solar cells (CQDSCs) are attracting growing attention owing to significant improvements in efficiency. However, even the best depleted‐heterojunction CQDSCs currently display open‐circuit voltages (VOCs) at least 0.5 V below the voltage corresponding to the bandgap. We find that the tail of states in the conduction band of the metal oxide layer can limit the achievable device efficiency. By continuously tuning the zinc oxide conduction band position via magnesium doping, we probe this critical loss pathway in ZnO–PbSe CQDSCs and optimize the energetic position of the tail of states, thereby increasing both the VOC (from 408 mV to 608 mV) and the device efficiency.  相似文献   

18.
The origin of open‐circuit voltage (VOC) was studied for polymer solar cells based on a blend of poly(3‐hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of JV characteristics was analyzed by an equivalent circuit model. As a result, VOC increased with the decrease in the saturation current density J0 of the device. Furthermore, J0 was dependent on the activation energy EA for J0, which is related to the HOMO–LUMO energy gap between P3HT and fullerene. Interestingly, the pre‐exponential term J00 for J0 was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on VOC. This is probably because the recombination is non‐diffusion‐lmilited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of VOC is ascribed not only to the relative HOMO–LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene.  相似文献   

19.
As perovskite solar cells (PSCs) are highly efficient, demonstration of high‐performance printed devices becomes important. 2D/3D heterostructures have recently emerged as an attractive way to relieving the film inhomogeneity and instability in perovskite devices. In this work, a 2D/3D ensemble with 2D perovskites self‐assembled atop 3D methylammonium lead triiodide (MAPbI3) via a one‐step printing process is shown. A clean and flat interface is observed in the 2D/3D bilayer heterostructure for the first time. The 2D perovskite capping layer significantly suppresses nonradiative charge recombination, resulting in a marked increase in open‐circuit voltage (VOC) of the devices by up to 100 mV. An ultrahigh VOC of 1.20 V is achieved for MAPbI3 PSCs, corresponding to 91% of the Shockley–Queisser limit. Moreover, notable enhancement in light, thermal, and moisture stability is obtained as a result of the protective barrier of the 2D perovskites. These results suggest a viable approach for scalable fabrication of highly efficient perovskite solar cells with enhanced environmental stability.  相似文献   

20.
The thin‐film photovoltaic absorber Cu2ZnSn(S,Se)4 (CZTSSe) holds considerable promise for large scale conversion of sunlight into electricity. CZTSSe is composed of Earth‐abundant elements that exhibit low‐toxicities, but improvements in device efficiency have been hampered by difficulties in increasing open circuit voltages (VOC) due, at least in part, to disorder induced band tailing. We present a method to increase VOC through direct modification of the back contact; our approach involves the separation of fully functioning devices from their Mo/glass substrate to reveal the back CZTSSe surface. Formation of a new back contact consisting of a thermally deposited high work function material (MoO3), together with a higly reflective (Au) capping layer, creates an electrostatic field that drives electrons to the front p‐n junction and leads to a decrease in electron‐hole recombination. Model simulations indicating an increase in VOC with decreasing absorber thickness are borne out by experiments with devices of varying thicknesses (0.7–2.0 μm). We report VOC increases of up to 49 mV for a 1 μm thick absorber, with even greater increases up to 61 mV when the back CZTSSe surface is etched with bromine‐methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号