首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing the lifetime of polymer based organic solar cells is still a major challenge. Here, the photostability of bulk heterojunction solar cells based on the polymer poly[4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thiazole[5,4‐d]thiazole)‐1,8‐diyl] (PDTSTzTz) and the fullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC60BM) under inert atmosphere is investigated. Correlation of electrical measurements on complete devices and UV‐vis absorption measurements as well as high‐performance liquid chromatography (HPLC) analysis on the active materials reveals that photodimerization of PC60BM is responsible for the observed degradation. Simulation of the electrical device parameters shows that this dimerization results in a significant reduction of the charge carrier mobility. Both the dimerization and the associated device performance loss turn out to be reversible upon annealing. BisPC60BM, the bis‐substituted analog of PC60BM, is shown to be resistant towards light exposure, which in turn enables the manufacture of photostable PDTSTzTz:bisPC60BM solar cells.  相似文献   

2.
Understanding the morphology of polymer‐based bulk heterojunction (BHJ) solar cells is necessary to improve device efficiencies. Blends of a low‐bandgap silole‐containing conjugated polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b;2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (PSBTBT) with [6,6]phenyl‐C61‐butyric acid methyl ester (PCBM) were investigated under different processing conditions. The surface morphologies and vertical segregation of the “As‐Spun”, “Pre‐Annealed”, and “Post‐Annealed” films were studied by scanning force microscopy, contact angle measurements, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, dynamic secondary ion mass spectrometry, and neutron reflectivity. The results showed that PSBTBT was enriched at the cathode interface in the “As‐Spun” films and thermal annealing increased the segregation of PSBTBT to the free surface, while thermal annealing after deposition of the cathode increased the PCBM concentration at the cathode interface. Grazing‐incidence X‐ray diffraction and small‐angle neutron scattering showed that the crystallization of PSBTBT and segregation of PCBM occurred during spin coating, and thermal annealing increased the ordering of PSBTBT and enhanced the segregation of the PCBM, forming domains ~10 nm in size, leading to an improvement in photovoltaic performance.  相似文献   

3.
4.
Bulk heterojunction solar cells (BHJs) based on poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ~70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fill factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We find that hole‐traps in the polymer, which we characterize using space‐charge limited current measurements, play an important role in the performance of PCDTBT‐based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the “fruit‐fly” P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short‐range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π–π stacking. The decrease in structural order is matched by the movement of hole‐traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBT‐based BHJs. These findings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order.  相似文献   

5.
6.
CdSe nanocrystals (NCs) can be used as an electron acceptor in solar cells, employing organic ligands to passivate their surface and make them processable from solution. The nature and abundance of impurities present after NC ligand exchange from oleic acid to n‐butylamine are identified. A further purification step using hexane as a selective solvent is described, which excludes NC aggregates from solution. The influence of NC aggregates on photovoltaic device performance is studied in a CdSe:poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene] (MDMO‐PPV) bulk heterojunction solar cell. The exclusion of NC aggregates leads to a four‐fold increase in device power conversion efficiency (PCE) in optimized devices. A superior blend morphology leading to improved charge generation and a better NC percolation network is identified as the main causes of this increased solar cell performance.  相似文献   

7.
Performance losses and aging mechanisms are investigated in state‐of‐the‐art PTB7:PC70BM solar cells. Inverted devices incorporating a vanadium pentoxide (V2O5) top contact have efficiencies of 8%. After aging the unencapsulated devices, no changes are observed in the open circuit voltage (Voc) or short circuit current (Jsc); however, the fill factor (FF) drops from 0.7 to 0.61. An s‐shape initially appears in the JV curve after aging, which can be reduced by cycling through the JV curve under illumination. This is discussed in context of the redox properties of V2O5. With impedance spectroscopy, it is demonstrated that changes to the contact interfaces are completely reversible and not responsible for the performance loss. Intensity modulated photocurrent spectroscopy combined with device modeling reveals that the loss in FF is due to trap formation in the active layer. Additionally it is observed that the performance of pristine devices is limited by optical absorption in the thin active layer and the build‐up of space charge which hinders carrier extraction.  相似文献   

8.
The authors present efficient all‐polymer solar cells comprising two different low‐bandgap naphthalenediimide (NDI)‐based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near‐field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large‐scale phase‐separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donor–acceptor heterojunction.  相似文献   

9.
Organic semiconductors are in general known to have an inherently lower charge carrier mobility compared to their inorganic counterparts. Bimolecular recombination of holes and electrons is an important loss mechanism and can often be described by the Langevin recombination model. Here, the device physics of bulk heterojunction solar cells based on a nonfullerene acceptor (IDTBR) in combination with poly(3‐hexylthiophene) (P3HT) are elucidated, showing an unprecedentedly low bimolecular recombination rate. The high fill factor observed (above 65%) is attributed to non‐Langevin behavior with a Langevin prefactor (β/βL) of 1.9 × 10?4. The absence of parasitic recombination and high charge carrier lifetimes in P3HT:IDTBR solar cells inform an almost ideal bimolecular recombination behavior. This exceptional recombination behavior is explored to fabricate devices with layer thicknesses up to 450 nm without significant performance losses. The determination of the photoexcited carrier mobility by time‐of‐flight measurements reveals a long‐lived and nonthermalized carrier transport as the origin for the exceptional transport physics. The crystalline microstructure arrangement of both components is suggested to be decisive for this slow recombination dynamics. Further, the thickness‐independent power conversion efficiency is of utmost technological relevance for upscaling production and reiterates the importance of understanding material design in the context of low bimolecular recombination.  相似文献   

10.
It is demonstrated that a combination of microsecond transient photocurrent measurements and film morphology characterization can be used to identify a charge‐carrier blocking layer within polymer:fullerene bulk‐heterojunction solar cells. Solution‐processed molybdenum oxide (s‐MoOx) interlayers are used to control the morphology of the bulk‐heterojunction. By selecting either a low‐ or high‐temperature annealing (70 °C or 150 °C) for the s‐MoOx layer, a well‐performing device is fabricated with an ideally interconnected, high‐efficiency morphology, or a device is fabricated in which the fullerene phase segregates near the hole extracting contact preventing efficient charge extraction. By probing the photocurrent dynamics of these two contrasting model systems as a function of excitation voltage and light intensity, the optoelectronic responses of the solar cells are correlated with the vertical phase composition of the polymer:fullerene active layer, which is known from dynamic secondary‐ion mass spectroscopy (DSIMS). Numerical simulations are used to verify and understand the experimental results. The result is a method to detect poor morphologies in operating organic solar cells.  相似文献   

11.
The conjugated polymer, poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (pBTTT‐C16), allows a systematic tuning of the blend morphology by varying the acceptor type and fraction, making it a well‐suited structural model for studying the fundamental processes in organic bulk heterojunction solar cells. To analyze the role of intercalated and pure fullerene domains on charge carrier photogeneration, time delayed collection field (TDCF) measurements and Fourier‐transform photocurrent spectroscopy (FTPS) are performed on pBTTT‐C16:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) solar cells with various stoichiometries. A weak influence of excess photon energy on photogeneration along with a photogeneration having a weaker field dependence at increasing fullerene loading is found. The findings are assigned to a dissociation via thermalized charge transfer (CT) states supported by an enhanced electron delocalization along spatially extended PC61BM nanophases that form in addition to a bimolecular crystal (BMC) for PC61BM rich blends. The highly efficient transfer of charge carriers from the BMC into the pure domains are studied further by TDCF measurements performed on non‐intercalated pBTTT‐C16:bisPC61BM blends. They reveal a field dependent charge generation similar to the 1:4 PC61BM blend, demonstrating that the presence of pure acceptor phases is the major driving force for an efficient, field independent CT dissociation.  相似文献   

12.
In this study, a comprehensive analytical model to quantify the total nongeminate recombination losses, originating from bimolecular as well as bulk and surface trap‐assisted recombination mechanisms in nonfullerene‐based bulk heterojunction organic solar cells is developed. This proposed model is successfully employed to obtain the different contributions to the recombination current of the investigated solar cells under different illumination intensities. Additionally, the model quantitatively describes the experimentally measured open‐circuit voltage versus light intensity dependence. Most importantly, it is possible to calculate the experimental results with the same fitting parameter values from the presented model. The validity of this model is also proven by a combination of other independent, steady‐state, and transient experimental techniques. This new powerful analytical tool will enable researchers in the photovoltaic community to take into account the synergetic contribution from all relevant types of nongeminate recombination losses in different optoelectronic systems and target their analysis of recombination dynamics at any operating voltage.  相似文献   

13.
The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐octylthieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene‐rich domains, which cause extensive charge‐carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene‐rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin‐casting and this network acts as a template that prevents large‐scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene‐rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells.  相似文献   

14.
Open‐circuit voltage (VOC) losses in organic photovoltaics (OPVs) inhibit devices from reaching VOC values comparable to the bandgap of the donor–acceptor blend. Specifically, nonradiative recombination losses (?Vnr) are much greater in OPVs than in silicon or perovskite solar cells, yet the origins of this are not fully understood. To understand what makes a system have high or low loss, an investigation of the nonradiative recombination losses in a total of nine blend systems is carried out. An apparent relationship is observed between the relative domain purity of six blends and the degree of nonradiative recombination loss, where films exhibiting relatively less pure domains show lower ?Vnr than films with higher domain purity. Additionally, it is shown that when paired with a fullerene acceptor, polymer donors which have bulky backbone units to inhibit close π–π stacking exhibit lower nonradiative recombination losses than in blends where the polymer can pack more closely. This work reports a strategy that ensures ?Vnr can be measured accurately and reports key observations on the relationship between ?Vnr and properties of the donor/acceptor interface.  相似文献   

15.
16.
Nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C60 is investigated. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differences in charge carrier decay dynamics. A combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density is applied. In organic solar cells, charge photogeneration and recombination primarily occur at the donor–acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two‐dimensional heterointerface. In order to study nongeminate recombination dynamics in PHJ devices the charge accumulation at this interface is most relavent. As only the spatially averaged carrier concentration can be determined from extraction techniques, the charge carrier density at the interface nint is derived from the open circuit voltage. Comparing the experimental results with macroscopic device simulation, the differences of recombination and charge carrier densities in CuPc:C60 PHJ and BHJ devices are discussed with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.  相似文献   

17.
Doping of organic bulk heterojunction solar cells has the potential to improve their power conversion efficiency (PCE). Deconvoluting the effect of doping on charge transport, recombination, and energetic disorder remains challenging. It is demonstrated that molecular doping has two competing effects: on one hand, dopant ions create additional traps while on the other hand free dopant‐induced charges fill deep states possibly leading to V OC and mobility increases. It is shown that molar dopant concentrations as low as a few parts per million can improve the PCE of organic bulk heterojunctions. Higher concentrations degrade the performance of the cells. In doped cells where PCE is observed to increase, such improvement cannot be attributed to better charge transport. Instead, the V OC increase in unannealed P3HT:PCBM cells upon doping is indeed due to trap filling, while for annealed P3HT:PCBM cells the change in V OC is related to morphology changes and dopant segregation. In PCDTBT:PC70BM cells, the enhanced PCE upon doping is explained by changes in the thickness of the active layer. This study highlights the complexity of bulk doping in organic solar cells due to the generally low doping efficiency and the constraint on doping concentrations to avoid carrier recombination and adverse morphology changes.  相似文献   

18.
The complex microstructure of organic semiconductor mixtures continues to obscure the connection between the active layer morphology and photovoltaic device performance. For example, the ubiquitous presence of mixed phases in the active layer of polymer/fullerene solar cells creates multiple morphologically distinct interfaces which are capable of exciton dissociation or charge recombination. Here, it is shown that domain compositions and fullerene aggregation can strongly modulate charge photogeneration at ultrafast timescales through studies of a model system, mixtures of a low band‐gap polymer, poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]germole)‐2,6‐diyl‐alt‐(2,1,3‐benzothia‐diazole)‐4,7‐diyl], and [6,6]‐phenyl‐C71‐butyric acid methyl ester. Structural characterization using energy‐filtered transmission electron microscopy (EFTEM) and resonant soft X‐ray scattering shows similar microstructures even with changes in the overall film composition. Composition maps generated from EFTEM, however, demonstrate that compositions of mixed domains vary significantly with overall film composition. Furthermore, the amount of polymer in the mixed domains is inversely correlated with device performance. Photoinduced absorption studies using ultrafast infrared spectroscopy demonstrate that polaron concentrations are highest when mixed domains contain the least polymer. Grazing‐incidence X‐ray scattering results show that larger fullerene coherence lengths are correlated to higher polaron yields. Thus, the purity of the mixed domains is critical for efficient charge photogeneration because purity modulates fullerene aggregation and electron delocalization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号