首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The octameric exocyst complex is associated with the junctional complex and recycling endosomes and is proposed to selectively tether cargo vesicles directed toward the basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells. We observed that the exocyst subunits Sec6, Sec8, and Exo70 were localized to early endosomes, transferrin-positive common recycling endosomes, and Rab11a-positive apical recycling endosomes of polarized MDCK cells. Consistent with its localization to multiple populations of endosomes, addition of function-blocking Sec8 antibodies to streptolysin-O-permeabilized cells revealed exocyst requirements for several endocytic pathways including basolateral recycling, apical recycling, and basolateral-to-apical transcytosis. The latter was selectively dependent on interactions between the small GTPase Rab11a and Sec15A and was inhibited by expression of the C-terminus of Sec15A or down-regulation of Sec15A expression using shRNA. These results indicate that the exocyst complex may be a multipurpose regulator of endocytic traffic directed toward both poles of polarized epithelial cells and that transcytotic traffic is likely to require Rab11a-dependent recruitment and modulation of exocyst function, likely through interactions with Sec15A.  相似文献   

2.
Exocytosis in the budding yeast Saccharomyces cerevisiae occurs at discrete domains of the plasma membrane. The protein complex that tethers incoming vesicles to sites of secretion is known as the exocyst. We have used photobleaching recovery experiments to characterize the dynamic behavior of the eight subunits that make up the exocyst. One subset (Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, and Exo84p) exhibits mobility similar to that of the vesicle-bound Rab family protein Sec4p, whereas Sec3p and Exo70p exhibit substantially more stability. Disruption of actin assembly abolishes the ability of the first subset of subunits to recover after photobleaching, whereas Sec3p and Exo70p are resistant. Immunogold electron microscopy and epifluorescence video microscopy indicate that all exocyst subunits, except for Sec3p, are associated with secretory vesicles as they arrive at exocytic sites. Assembly of the exocyst occurs when the first subset of subunits, delivered on vesicles, joins Sec3p and Exo70p on the plasma membrane. Exocyst assembly serves to both target and tether vesicles to sites of exocytosis.  相似文献   

3.
The exocyst complex plays an essential role in tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. However, how the exocyst complex is assembled and targeted to sites of secretion is unclear. Here, we have investigated the role of the exocyst component Exo84p in these processes. We have generated an array of temperature-sensitive yeast exo84 mutants. Electron microscopy and cargo protein traffic analyses of these mutants indicated that Exo84p is specifically involved in the post-Golgi stage of secretion. Using various yeast mutants, we systematically studied the localization of Exo84p and other exocyst proteins by fluorescence microscopy. We found that pre-Golgi traffic and polarized actin organization are required for Exo84p localization. However, none of the exocyst proteins controls Exo84p polarization. In addition, Sec3p is not responsible for the polarization of Exo84p or any other exocyst component to the daughter cell. On the other hand, several exocyst members, including Sec10p, Sec15p, and Exo70p, clearly require Exo84p for their polarization. Biochemical analyses of the exocyst composition indicated that the assembly of Sec10p, Sec15p, and Exo70p with the rest of the complex requires Exo84p. We propose that there are at least two distinct regulatory mechanisms for exocyst polarization, one for Sec3p and one for the other members, including Exo84p. Exo84p plays a critical role in both the assembly of the exocyst and its targeting to sites of secretion.  相似文献   

4.
Skin pigmentation involves the production of the pigment melanin by melanocytes, in melanosomes and subsequent transfer to keratinocytes. Within keratinocytes, melanin polarizes to the apical perinuclear region to form a protective cap, shielding the DNA from ultraviolet radiation‐induced damage. Previously, we found evidence to support the exocytosis by melanocytes of the melanin core, termed melanocore, followed by endo/phagocytosis by keratinocytes as a main form of transfer, with Rab11b playing a key role in the process. Here, we report the requirement for the exocyst tethering complex in melanocore exocytosis and transfer to keratinocytes. We observed that the silencing of the exocyst subunits Sec8 or Exo70 impairs melanocore exocytosis from melanocytes, without affecting melanin synthesis. Moreover, we confirmed by immunoprecipitation that Rab11b interacts with Sec8 in melanocytes. Furthermore, we found that the silencing of Sec8 or Exo70 in melanocytes impairs melanin transfer to keratinocytes. These results support our model as melanocore exocytosis from melanocytes is essential for melanin transfer to keratinocytes and skin pigmentation and suggest that the role of Rab11b in melanocore exocytosis is mediated by the exocyst.  相似文献   

5.
Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.  相似文献   

6.
The exocyst is a conserved protein complex essential for trafficking secretory vesicles to the plasma membrane. The structure of the C-terminal domain of the exocyst subunit Sec6p reveals multiple helical bundles, which are structurally and topologically similar to Exo70p and the C-terminal domains of Exo84p and Sec15, despite <10% sequence identity. The helical bundles appear to be evolutionarily related molecular scaffolds that have diverged to create functionally distinct exocyst proteins.  相似文献   

7.
The exocyst is an octameric protein complex required to tether secretory vesicles to exocytic sites and to retain ER tubules at the apical tip of budded cells. Unlike the other five exocyst genes, SEC3, SEC5, and EXO70 are not essential for growth or secretion when either the upstream activator rab, Sec4p, or the downstream SNARE-binding component, Sec1p, are overproduced. Analysis of the suppressed sec3Delta, sec5Delta, and exo70Delta strains demonstrates that the corresponding proteins confer differential effects on vesicle targeting and ER inheritance. Sec3p and Sec5p are more critical than Exo70p for ER inheritance. Although nonessential under these conditions, Sec3p, Sec5p, and Exo70p are still important for tethering, as in their absence the exocyst is only partially assembled. Sec1p overproduction results in increased SNARE complex levels, indicating a role in assembly or stabilization of SNARE complexes. Furthermore, a fraction of Sec1p can be coprecipitated with the exoycst. Our results suggest that Sec1p couples exocyst-mediated vesicle tethering with SNARE-mediated docking and fusion.  相似文献   

8.
Invadopodia are actin-rich membrane protrusions formed by tumor cells that degrade the extracellular matrix for invasion. Invadopodia formation involves membrane protrusions driven by Arp2/3-mediated actin polymerization and secretion of matrix metalloproteinases (MMPs) at the focal degrading sites. The exocyst mediates the tethering of post-Golgi secretory vesicles at the plasma membrane for exocytosis and has recently been implicated in regulating actin dynamics during cell migration. Here, we report that the exocyst plays a pivotal role in invadopodial activity. With RNAi knockdown of the exocyst component Exo70 or Sec8, MDA-MB-231 cells expressing constitutively active c-Src failed to form invadopodia. On the other hand, overexpression of Exo70 promoted invadopodia formation. Disrupting the exocyst function by siEXO70 or siSEC8 treatment or by expression of a dominant negative fragment of Exo70 inhibited the secretion of MMPs. We have also found that the exocyst interacts with the Arp2/3 complex in cells with high invasion potential; blocking the exocyst-Arp2/3 interaction inhibited Arp2/3-mediated actin polymerization and invadopodia formation. Together, our results suggest that the exocyst plays important roles in cell invasion by mediating the secretion of MMPs at focal degrading sites and regulating Arp2/3-mediated actin dynamics.  相似文献   

9.
Polarized exocytosis plays a major role in development and cell differentiation but the mechanisms that target exocytosis to specific membrane domains in animal cells are still poorly understood. We characterized Drosophila Sec6, a component of the exocyst complex that is believed to tether secretory vesicles to specific plasma membrane sites. sec6 mutations cause cell lethality and disrupt plasma membrane growth. In developing photoreceptor cells (PRCs), Sec6 but not Sec5 or Sec8 shows accumulation at adherens junctions. In late PRCs, Sec6, Sec5, and Sec8 colocalize at the rhabdomere, the light sensing subdomain of the apical membrane. PRCs with reduced Sec6 function accumulate secretory vesicles and fail to transport proteins to the rhabdomere, but show normal localization of proteins to the apical stalk membrane and the basolateral membrane. Furthermore, we show that Rab11 forms a complex with Sec5 and that Sec5 interacts with Sec6 suggesting that the exocyst is a Rab11 effector that facilitates protein transport to the apical rhabdomere in Drosophila PRCs.  相似文献   

10.
Rab/Ypt GTPases play key roles in the regulation of vesicular trafficking. They perform most of their functions in a GTP-bound form by interacting with specific downstream effectors. The exocyst is a complex of eight polypeptides involved in constitutive secretion and functions as an effector for multiple Ras-related small GTPases, including the Rab protein Sec4p in yeast. In this study, we have examined the localization and function of the Sec15 exocyst subunit in mammalian cells. Overexpressed Sec15 associated with clusters of tubular/vesicular elements that were concentrated in the perinuclear region. The tubular/vesicular clusters were dispersed throughout the cytoplasm upon treatment with the microtubule-depolymerizing agent nocodazole and were accessible to endocytosed transferrin, but not exocytic cargo (vesicular stomatitis virus glycoprotein). Consistent with these observations, Sec15 colocalized selectively with the recycling endosome marker Rab11 and exhibited a GTP-dependent interaction with the Rab11 GTPase, but not with Rab4, Rab6, or Rab7. These findings provide the first evidence that the exocyst functions as a Rab effector complex in mammalian cells.  相似文献   

11.
He B  Xi F  Zhang X  Zhang J  Guo W 《The EMBO journal》2007,26(18):4053-4065
The exocyst is an octameric protein complex implicated in the tethering of post-Golgi secretory vesicles to the plasma membrane before fusion. The function of individual exocyst components and the mechanism by which this tethering complex is targeted to sites of secretion are not clear. In this study, we report that the exocyst subunit Exo70 functions in concert with Sec3 to anchor the exocyst to the plasma membrane. We found that the C-terminal Domain D of Exo70 directly interacts with phosphatidylinositol 4,5-bisphosphate. In addition, we have identified key residues on Exo70 that are critical for its interaction with phospholipids and the small GTPase Rho3. Further genetic and cell biological analyses suggest that the interaction of Exo70 with phospholipids, but not Rho3, is essential for the membrane association of the exocyst complex. We propose that Exo70 mediates the assembly of the exocyst complex at the plasma membrane, which is a crucial step in the tethering of post-Golgi secretory vesicles for exocytosis.  相似文献   

12.
The exocyst is a multiprotein complex that plays an important role in secretory vesicle targeting and docking at the plasma membrane. Here we report the identification and characterization of a new component of the exocyst, Exo84p, in the yeast Saccharomyces cerevisiae. Yeast cells depleted of Exo84p cannot survive. These cells are defective in invertase secretion and accumulate vesicles similar to those in the late sec mutants. Exo84p co-immunoprecipitates with the exocyst components, and a portion of the Exo84p co-sediments with the exocyst complex in velocity gradients. The assembly of Exo84p into the exocyst complex requires two other subunits, Sec5p and Sec10p. Exo84p interacts with both Sec5p and Sec10p in a two-hybrid assay. Overexpression of Exo84p selectively suppresses the temperature sensitivity of a sec5 mutant. Exo84p specifically localizes to the bud tip or mother/daughter connection, sites of polarized secretion in the yeast S. cerevisiae. Exo84p is mislocalized in a sec5 mutant. These studies suggest that Exo84p is an essential protein that plays an important role in polarized secretion.  相似文献   

13.
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.  相似文献   

14.
The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be broadly used for exocytosis.  相似文献   

15.
Gingival epithelial cells function as an innate host defence system to prevent intrusion by periodontal bacteria. Nevertheless, Porphyromonas gingivalis, the most well‐known periodontal pathogen, can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. However, it is poorly understood how this pathogen exits from infected cells for further transcellular spreading. The present study was performed to elucidate the cellular machinery exploited by P. gingivalis to exit from immortalized human gingival epithelial cells. P. gingivalis was shown to be internalized with early endosomes positive for the FYVE domain of EEA1 and transferrin receptor, and about half of the intracellular bacteria were then sorted to lytic compartments, including autolysosomes and late endosomes/lysosomes, while a considerable number of the remaining organisms were sorted to Rab11‐ and RalA‐positive recycling endosomes. Inhibition experiments revealed that bacterial exit was dependent on actin polymerization, lipid rafts and microtubule assembly. Dominant negative forms and RNAi knockdown of Rab11, RalA and exocyst complex subunits (Sec5, Sec6 and Exo84) significantly disturbed the exit of P. gingivalis. These results strongly suggest that the recycling pathway is exploited by intracellular P. gingivalis to exit from infected cells to neighbouring cells as a mechanism of cell‐to‐cell spreading.  相似文献   

16.
The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p–Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2.  相似文献   

17.
The exocyst consists of eight rod-shaped subunits that align in a side-by-side manner to tether secretory vesicles to the plasma membrane in preparation for fusion. Two subunits, Sec3p and Exo70p, localize to exocytic sites by an actin-independent pathway, whereas the other six ride on vesicles along actin cables. Here, we demonstrate that three of the four domains of Exo70p are essential for growth. The remaining domain, domain C, is not essential but when deleted, it leads to synthetic lethality with many secretory mutations, defects in exocyst assembly of exocyst components Sec5p and Sec6p, and loss of actin-independent localization. This is analogous to a deletion of the amino-terminal domain of Sec3p, which prevents an interaction with Cdc42p or Rho1p and blocks its actin-independent localization. The two mutations are synthetically lethal, even in the presence of high copy number suppressors that can bypass complete deletions of either single gene. Although domain C binds Rho3p, loss of the Exo70p-Rho3p interaction does not account for the synthetic lethal interactions or the exocyst assembly defects. The results suggest that either Exo70p or Sec3p must associate with the plasma membrane for the exocyst to function as a vesicle tether.  相似文献   

18.
The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits — Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.  相似文献   

19.
The E-Cadherin-catenin complex plays a critical role in epithelial cell-cell adhesion, polarization, and morphogenesis. Here, we have analyzed the mechanism of Drosophila E-Cadherin (DE-Cad) localization. Loss of function of the Drosophila exocyst components sec5, sec6, and sec15 in epithelial cells results in DE-Cad accumulation in an enlarged Rab11 recycling endosomal compartment and inhibits DE-Cad delivery to the membrane. Furthermore, Rab11 and Armadillo interact with the exocyst components Sec15 and Sec10, respectively. Our results support a model whereby the exocyst regulates DE-Cadherin trafficking, from recycling endosomes to sites on the epithelial cell membrane where Armadillo is located.  相似文献   

20.
The dual Rab11/Arf binding proteins, family of Rab11-interacting proteins FIP3 and FIP4 function in the delivery of recycling endosomes to the cleavage furrow and are, together with Rab11, essential for completion of abscission, the terminal step of cytokinesis. Here, we report that both FIP3 and FIP4 bind Arf6 in a nucleotide-dependent manner but exhibit differential affinities for Rab11 and Arf6. Both FIP3 and FIP4 can form ternary complexes with Rab11 and Arf6. Arf6 is localised to the furrow and midbody and we show that Arf6-GTP functions to localise FIP3 and FIP4 to midbodies during cytokinesis. Exo70p, a component of the Exocyst complex, also localises to the furrow of dividing cells and interacts with Arf6. We show that depletion of Exo70p leads to cytokinesis failure and an impairment of FIP3 and Rab11 localisation to the furrow and midbody. Moreover, Exo70p co-immunoprecipitates FIP3 and FIP4. Hence, we propose that FIP3 and FIP4 serve to couple Rab11-positive vesicle traffic from recycling endosomes to the cleavage furrow/midbody where they are tethered prior to fusion events via interactions with Arf6 and the Exocyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号