首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogeny of the Rhabdocoela, a species-rich taxon of free-living flatworms, is reconstructed based on complete 18S rDNA sequences. The analysis includes 62 rhabdocoels and 102 representatives of all major flatworm taxa. In total, 46 new sequences are used, 41 of them from rhabdocoel species, five from proseriates. Phylogenetic analysis was performed using maximum parsimony and Bayesian inference. Clade support was evaluated with parsimony jackknifing, Bremer support indices and Bayesian posterior probabilities. The resulting cladogram corroborates that the Rhabdocoela is monophyletic, but its sister group remains uncertain. The 'Dalyellioida' and the 'Typhloplanoida', both former rhabdocoel subtaxa, are polyphyletic. Within the Rhabdocoela the monophyletic Kalyptorhynchia, characterized by a muscular proboscis, forms the sister group of all other rhabdocoels. The Schizorhynchia is a monophyletic subtaxon of the Kalyptorhynchia, with the split proboscis as a synapomorphy. Except for the Dalyelliidae and the Typhloplanidae, both freshwater taxa, none of the 'families' previously included in the 'Typhloplanoida' and the 'Dalyellioida' appears to be monophyletic. As a result of this analysis, three existing and four new taxon names are formally defined following the rules of the Phylocode.  相似文献   

2.
Phylogenetic relationships within the diverse beetle superfamily Cucujoidea are poorly known. The Cerylonid Series (C.S.) is the largest of all proposed superfamilial cucujoid groups, comprising eight families and representing most of the known cucujoid species diversity. The monophyly of the C.S., however, has never been formally tested and the higher-level relationships among and within the constituent families remain equivocal. Here we present a phylogenetic study based on 18S and 28S rDNA for 16 outgroup taxa and 61 C.S. ingroup taxa, representing seven of the eight C.S. families and 20 of 39 subfamilies. We test the monophyly of the C.S., investigate the relationships among the C.S. families, and test the monophyly of the constituent families and subfamilies. Phylogenetic reconstruction of the combined data was achieved via standard static alignment parsimony analyses, Direct Optimization using parsimony, and partitioned Bayesian analysis. All three analyses support the paraphyly of Cucujoidea with respect to Tenebrionoidea and confirm the monophyly of the C.S. The C.S. families Bothrideridae, Cerylonidae, Discolomatidae, Coccinellidae and Corylophidae are supported as monophyletic in all analyses. Only the Bayesian analysis recovers a monophyletic Latridiidae. Endomychidae is recovered as polyphyletic in all analyses. Of the 14 subfamilies with multiple terminals in this study, 11 were supported as monophyletic. The corylophid subfamily Corylophinae and the coccinellid subfamilies Chilocorinae and Scymninae are recovered as paraphyletic. A sister grouping of Anamorphinae+Corylophidae is supported in all analyses. Other taxonomic implications are discussed in light of our results.  相似文献   

3.
The order Thysanoptera (Paraneoptera), commonly known as thrips, displays a wide range of behaviours, and includes several pest species. The classification and suggested relationships among these insects remain morphologically based, and have never been evaluated formally with a comprehensive molecular phylogenetic analysis. We tested the monophyly of the suborders, included families and the recognized subfamilies, and investigated their relationships. Phylogenies were reconstructed based upon 5299 bp from five genetic loci: 18S ribosomal DNA, 28S ribosomal DNA, Histone 3, Tubulin‐alpha I and cytochrome oxidase c subunit I. Ninety‐nine thrips species from seven of the nine families, all six subfamilies and 70 genera were sequenced. Maximum parsimony, maximum likelihood and Bayesian analyses all strongly support a monophyletic Tubulifera and Terebrantia. The families Phlaeothripidae, Aeolothripidae, Melanthripidae and Thripidae are recovered as monophyletic. The relationship of Aeolothripidae and Merothripidae to the rest of Terebrantia is equivocal. Molecular data support previous suggestions that Aeolothripidae or Merothripidae could be a sister to the rest of Terebrantia. Four of the six subfamilies are recovered as monophyletic. The two largest subfamilies, Phlaeothripinae and Thripinae, are paraphyletic and require further study to understand their internal relationships.  相似文献   

4.
During the last two decades, major taxonomic rearrangements were instituted in the anuran family Ranidae. Most of these changes were not based on phylogenetic analysis, and many are controversial. Addressing the phylogeny of Ranidae requires broader taxon sampling within the superfamily Ranoidea, the phylogenetic relationships and higher classification of which are also in a state of flux. No comprehensive attempt has yet been made to reconstruct ranid phylogeny using both morphological and molecular data. In the present contribution, data from 178 organismal characters were collated for 74 exemplar species representing the families Arthroleptidae, Hemisotidae, Hyperoliidae, Mantellidae Microhylidae, Petropedetidae, Rhacophoridae, Sooglossidae, and most subfamilies of Ranidae. These were combined with ~1 kb of DNA sequence from the mitochondrial 12S rDNA and 16S rDNA gene regions in a simultaneous parsimony analysis with direct optimization. Results support the classification of Hemisus with the brevicipitine microhylids, confirm that Arthroleptidae (and its two component subfamilies Astylosterninae and Arthroleptinae) are monophyletic, and advocate the recognition of Leptopelidae. Monophyly of Ranidae is compromised by recognition of Petropedetidae, Rhacophoridae and Mantellidae, which should be recognized as subfamilies of Ranidae at present. Furthermore, Petropedetidae was found to be grossly paraphyletic, comprising three clades which are all considered separate subfamilies of Ranidae, i.e., Petropedetinae, Phrynobatrachinae and Cacosterninae. Three well defined subfamilies of Ranidae were consistently retrieved as monophyletic in a sensitivity analysis, i.e., Tomopterninae, Ptychadeninae and Pyxicephalinae. However, Ptychadeninae and Pyxicephalinae were embedded in Raninae and Dicroglossinae, respectively. Ceratobatrachinae is removed from Dicroglossinae. Dicroglossinae is synonymized with Pyxicephalinae. A new subfamily Strongylopinae is proposed. Raninae should be conservatively treated as a “metataxon” (sensu Ford and Cannatella, 1993 ) until such time as it is fully revised. Tomopterninae is removed from synonymy with Cacosterninae. Morphological synapomorphies are reported for major monophyletic clades retrieved in the simultaneous analysis with equal weights. The present study found that many Old World clades appear to contain both African and Asian taxa, contrary to the findings of some recent biogeographical analyses. This study demonstrates the value of broad taxonomic sampling in ranid phylogeny, and highlights the immense contribution that can be made from detailed morphological data. © The Willi Hennig Society 2005.  相似文献   

5.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

6.
We present the first formal analysis of phylogenetic relationships among the Asilidae, based on four genes: 16S rDNA, 18S rDNA, 28S rDNA, and cytochrome oxidase II. Twenty-six ingroup taxa representing 11 of the 12 described subfamilies were selected to produce a phylogenetic estimate of asilid subfamilial relationships via optimization alignment, parsimony, and maximum likelihood techniques. Phylogenetic analyses support the monophyly of Asilidae with Leptogastrinae as the most basal robber fly lineage. Apocleinae+(Asilinae+Ommatiinae) is supported as monophyletic. The laphriinae-group (Laphriinae+Laphystiinae) and the dasypogoninae-group (Dasypogoninae+Stenopogoninae+Stichopogoninae+ Trigonomiminae) are paraphyletic. These results suggest that current subfamilial classification only partially reflects robber fly phylogeny, indicating the need for further phylogenetic investigation of this group.  相似文献   

7.
Siphonaptera (fleas) is a highly specialized order of holometabolous insects comprising ~2500 species placed in 16 families. Despite a long history of extensive work on flea classification and biology, phylogenetic relationships among fleas are virtually unknown. We present the first formal analysis of flea relationships based on a molecular matrix of four loci (18S ribosomal DNA, 28S ribosomal DNA, Cytochrome Oxidase II, and Elongation Factor 1‐alpha) for 128 flea taxa from around the world representing 16 families, 25 subfamilies, 26 tribes, and 83 flea genera with eight outgroups. Trees were reconstructed using direct optimization and maximum likelihood techniques. Our analysis supports Tungidae as the most basal flea lineage, sister group to the remainder of the extant fleas. Pygiopsyllomorpha is monophyletic, as are the constituent families Lycopsyllidae, Pygiopsyllidae, and Stivaliidae, with a sister group relationship between the latter two families. Macropsyllidae is resolved as sister group to Coptopsyllidae with moderate nodal support. Stephanociricidae is monophyletic, as are the two constituent subfamilies Stephanocircinae and Craneopsyllinae. Vermipsyllidae is placed as sister group to Jordanopsylla. Rhopalopsyllidae is monophyletic as are the two constituent subfamilies Rhopalopsyllinae and Parapsyllinae. Hystrichopsyllidae is paraphyletic with Hystrichopsyllini placed as sister to some species of Anomiopsyllini and Ctenopariini placed as sister to Carterettini. Ctenophthalmidae is grossly paraphyletic with the family broken into seven lineages dispersed on the tree. Most notably, Anomiopsyllini is paraphyletic. Pulicidae and Chimaeropsyllidae are both monophyletic and these families are sister groups. Ceratophyllomorpha is monophyletic and includes Ischnopsyllidae, Ceratophyllidae, and Leptopsyllidae. Leptopsyllidae is paraphyletic as are its constituent subfamilies Amphipsyllinae and Leptopsyllinae and the tribes Amphipsyllini and Leptopsyllini. Ischnopsyllidae is monophyletic. Ceratophyllidae is monophyletic, with a monophyletic Dactypsyllinae nested within Ceratophyllinae, rendering the latter group paraphyletic. Mapping of general host associations on our topology reveals an early association with mammals with four independent shifts to birds. © The Willi Hennig Society 2008.  相似文献   

8.
Tipuloidea, the crane flies, are a diverse lineage of true flies (Insecta: Diptera) whose phylogenetic classification and taxonomy remain a challenge. Here we present the results of a quantitative phylogenetic analysis of Tipuloidea based on combined morphological characters (adult, larvae and pupae) and nuclear gene sequence data (28S rDNA and CAD). Forty‐five species, from 44 genera and subgenera, were sampled, representing the four putative families of Tipuloidea (Cylindrotomidae, Limoniidae, Pediciidae and Tipulidae sensu stricto). Analyses of individual datasets, although differing in overall topology, support the monophyly of several major lineages within Tipuloidea. Parsimony and Bayesian analyses using individual morphological and molecular datasets resulted in incongruent topologies. Increased resolution and tree support was obtained when both datasets (morphology and genes) were combined, in both combined evidence parsimony and Bayesian analyses, than when analysed separately. The recovered consensus phylogeny was not consistent with any previously proposed Tipuloidea classification, with previous importance assigned to character states shown here to represent losses and reversals seen as a major factor influencing erroneous classification. The results provided here, together with evidence from previous analyses, were used to append the Tipuloidea classification to supported evolutionary lineages. Tipuloidea is presented as two families: Pediciidae and Tipulidae. Pediciidae is recovered as the sister group to all remaining Tipuloidea. Our current phylogenetic hypothesis is not consistent with the existing subfamilial classification of the ‘Limoniidae’, which is paraphyletic with respect to a well‐supported Tipulinae + Cylindrotominae clade, whereas the three ‘limoniid’ subfamilies are para‐ or polyphyletic. The recognition of ‘Limoniidae’ as a valid monophyletic family is discouraged and the subfamilies of ‘Limoniidae’ are amended and placed within Tipulidae. A revised phylogenetic classification is proposed for the crane flies based on a synthesis of evidence from multiple genes and morphology.  相似文献   

9.
A high diversity of pleurostomatid ciliates has been discovered in the last decade, and their systematics needs to be improved in the light of new findings concerning their morphology and molecular phylogeny. In this work, a new genus, Protolitonotus gen. n., and two new species, Protolitonotus magnus sp. n. and Protolitonotus longus sp. n., were studied. Furthermore, 19 novel nucleotide sequences of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2 were collected to determine the phylogenetic relationships and systematic positions of the pleurostomatid ciliates in this study. Based on both molecular and morphological data, the results demonstrated that: (i) as disclosed by the sequence analysis of SSU rDNA, LSU rDNA and ITS1‐5.8S‐ITS2, Protolitonotus gen. n. is sister to all other pleurostomatids and thus represents an independent lineage and a separate family, Protolitonotidae fam. n., which is defined by the presence of a semi‐suture formed by the right somatic kineties near the dorsal margin of the body; (ii) the families Litonotidae and Kentrophyllidae are both monophyletic based on both SSU rDNA and LSU rDNA sequences, whereas Amphileptidae are non‐monophyletic in trees inferred from SSU rDNA sequences; and (iii) the genera Loxophyllum and Kentrophyllum are both monophyletic, whereas Litonotus is non‐monophyletic based on SSU rDNA analyses. ITS1‐5.8S‐ITS2 sequence data were used for the phylogenetic analyses of pleurostomatids for the first time; however, species relationships were less well resolved than in the SSU rDNA and LSU rDNA trees. In addition, a major revision to the classification of the order Pleurostomatida is suggested and a key to its families and genera is provided.  相似文献   

10.
The evolutionary history of the Chydoridae (Crustacea: Cladocera)   总被引:3,自引:0,他引:3  
Although much is known about the evolutionary history of the pelagic 'cladocerans', there is little information on benthic families such as the Chydoridae. In this study, we examine the phylogenetic history of 37 chydorid species using sequence variation in two mitochondrial genes, COI and 16S rDNA, and one nuclear gene, 18S rDNA. The four recognized subfamilies of chydorids (Eurycercinae, Saycinae, Aloninae and Chydorinae) were well supported, being separated by large sequence divergences of 14.3–16.4%. By contrast, the existing taxonomic system appears to be less clear at a generic level, since many genera (e.g. Alona , Chydorus , Pleuroxus ) consist of an amalgam of distantly related species. However, among those genera which are monophyletic, levels of divergence are very high, suggesting that they originated somewhere in the mid-Palaeozoic. The factors involved in promoting diversification in this group are discussed.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79, 629–643.  相似文献   

11.
【目的】利用核糖体DNA联合序列探讨天牛总科高阶元分子系统发育。【方法】本研究采用分子标记技术,分析测定了63种天牛核糖体28S rDNA D2和D3区以及18S rDNA V4和V7区的DNA序列,并采用邻接法、最大似然法和贝叶斯推论法分别构建了天牛总科2科6亚科63种的分子进化系统。【结果】序列联合比对分析,最终得到1 404 bp的联合数据组,其中可变位点446个(32.0%),保守位点958(68.0%),转换/颠换的平均值(R值)为1.73。28S rDNA和18S rDNA以及联合序列的饱和度分析显示碱基突变未达到饱和,说明这些序列适合于分子进化树的构建。利用不同系统发育重建方法得到进化树具有相似拓扑结构,结果支持沟胫天牛亚科、花天牛亚科和天牛亚科为单系群,这与形态学分类结果相似;狭胸天牛独立成为亚科得到了支持。【结论】利用28S rDNA D2和D3区以及18S rDNA V4和V7区联合序列成功构建出了天牛总科高阶元的系统发育树。研究表明联合序列分析是探讨天牛高阶元分类的有效的方法。  相似文献   

12.
With about 60,000 described species, Curculionoidea represent the most species-rich superfamily in the animal kingdom. The immense diversity apparently creates difficulties in the reconstruction of the phylogenetic relationships. Independent morphological studies have led to very different classifications. This study is based on molecular data from two independent molecular sources, the 16S and 18S rDNA. Sensitivity analyses were conducted for the sequence alignment (gap costs were varied) as well as the phylogenetic reconstruction algorithms and some of their parameters. The higher-level relationships reconstructed within Curculionoidea are sensitive to alignment and reconstruction method. Nemonychidae or Oxycorynidae+Belidae were found to be sister to all remaining Curculionoidea in many analyses. The 16S rDNA sequence data (obtained from 157 species) corroborate many tribes and genera as monophyletic. It is observed that the phylogenetic reconstruction of genera with specific genetic features such as polyploidy and parthenogenetic reproduction is difficult in weevils. The curculionid subfamily Lixinae appears monophyletic. A new monophylum consisting of Entiminae, Hyperinae, Cyclominae, Myllorhinus plus possibly the Cossoninae is distinguished and we call it Entiminae s.l. For most other subfamilies and families homoplasy concealed the phylogenetic signal (due to saturation of the 16S sequences), or the species sampling was insufficient, although our sampling scheme was rather broad. We observed that although data from one source can easily be misleading (16S) or hardly informative (18S), the combination of the two independent data sets can result in useful information for such a speciose group of organisms. Our study represents the most thorough analysis of molecular sequence data of the Curculionoidea to date and although the phylogenetic results appear less stable than expected, they reflect the information content of these sequence data realistically and thus contribute to the total knowledge about the phylogeny of the Curculionoidea.  相似文献   

13.
Naidinae (former Naididae) is a group of small aquatic clitellate annelids, common worldwide. In this study, we evaluated the phylogenetic status of Naidinae, and examined the phylogenetic relationships within the group. Sequence data from two mitochondrial genes (12S rDNA and 16S rDNA), and one nuclear gene (18S rDNA), were used. Sequences were obtained from 27 naidine species, 24 species from the other tubificid subfamilies, and five outgroup taxa. New sequences (in all 108) as well as GenBank data were used. The data were analysed by parsimony and Bayesian inference. The tree topologies emanating from the different analyses are congruent to a great extent. Naidinae is not found to be monophyletic. The naidine genus Pristina appears to be a derived group within a clade consisting of several genera (Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus) from another tubificid subfamily, Rhyacodrilinae. These results demonstrate the need for a taxonomic revision: either Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus should be included within Naidinae, or Pristina should be excluded from this subfamily. Monophyly of four out of six naidine genera represented by more than one species is supported: Chaetogaster, Dero, Paranais, and Pristina, respectively.  相似文献   

14.
Phylogenetic analyses of Meliaceae, including representatives of all four currently recognized subfamilies and all but two tribes (32 genera and 35 species, respectively), were carried out using DNA sequence data from three regions: plastid genes rbcL, matK (partial), and nuclear 26S rDNA (partial). Individual and combined phylogenetic analyses were performed for the rbcL, matK, and 26S rDNA data sets. Although the percentage of informative characters is highest in the segment of matK sequenced, rbcL provides the greatest number of informative characters of the three regions, resulting in the best resolved trees. Results of parsimony analyses support the recognition of only two subfamilies (Melioideae and Swietenioideae), which are sister groups. Melieae are the only tribe recognized previously that are strongly supported as monophyletic. The members of the two small monogeneric subfamilies, Quivisianthe and Capuronianthus, fall within Melioideae and Swietenioideae, respectively, supporting their taxonomic inclusion in these groups. Furthermore, the data indicate a close relationship between Aglaieae and Guareeae and a possible monophyletic origin of Cedreleae of Swietenioideae. For Trichilieae (Melioideae) and Swietenieae (Swietenioideae) lack of monophyly is indicated.  相似文献   

15.
基于28S rDNA 的叩甲科分子系统发育关系研究   总被引:1,自引:0,他引:1  
【目的】通过对叩甲科(Elateridae)昆虫核糖体28S rDNA基因片段序列进行比较,从分子水平研究叩甲科昆虫的系统发育关系,并和传统分类结果相比较,为我国叩甲科分类系统的论证和进一步修订奠定基础。【方法】将自测的我国9种(含两个地理种群)共10个叩甲科昆虫样品的28S rDNA基因片段序列与GenBank报道的32种叩甲科昆虫进行同一性比较,用DNAStar Lasergene v 7.1.0和MEGA4.0(NJ法、MP法和ME法)构建分子系统发育树。【结果】在获得的890 bp的序列中,保守位点477个,占全部位点的56.1%;简约位点291个,占全部位点的34.2%;G+C的平均含量为63.9%,明显高于A+T的平均含量,碱基组成偏向G和C;转换(transition)稍高于颠换(transversion)。遗传距离分析表明叩甲科昆虫各亚科内各种间遗传距离在0.000~0.130之间变动,明显小于各亚科之间的遗传距离。不同的系统发育树都支持叩甲科为一单系群,并将10个亚科聚为4个聚类簇:聚类簇Ⅰ为梳爪叩甲亚科(Melanotinae)+叩甲亚科(Elaterinae),聚类簇Ⅱ为槽缝叩甲亚科(Agrypninae)+萤叩甲亚科(Pyrophorinae)+单叶叩甲亚科(Conoderinae),聚类簇Ⅲ为小叩甲亚科(Negastriinae)+心盾叩甲亚科(Cardiophorinae),聚类簇Ⅳ为齿胸叩甲亚科(Denticollinae)+尖鞘叩甲亚科(Oxynopterinae)和异角叩甲亚科(Pityobiinae)。它们来源于2个支系,支系1包含聚类簇Ⅰ,支系2包含聚类簇Ⅱ、聚类簇Ⅲ和聚类簇Ⅳ,而Senodonia quadricollis总是单独作为一支与其他叩甲分开。【结论】本研究证实了过去基于成虫和幼虫形态为基础的分类系统的基本合理性,一是叩甲科为一单系类群;二是叩甲科可明显地分为4个簇群;三是心盾叩甲亚科(Cardiophorinae)为一单系类群,但其他许多亚科存在并系的情况,特别是Senodonia quadricollis的归属还需进一步论证。28S rDNA 序列分析是一种很好的研究叩甲科从种级到科级各类群间的系统发育关系的方法。  相似文献   

16.
The relationships among ant subfamilies were studied by phylogenetic analysis of rDNA sequences of 15 species from seven subfamilies. PCR primers were designed on the basis of the rDNA sequence of the Australian bulldog ant, Myrmecia croslandi, previously determined. Phylogenetic trees were constructed using sequences of a fragment of 18S rDNA (1.8 kb), a fragment of 28S rDNA (0.7 kb excluding variable regions) and a combination of the 18S and 28S rDNAs, by neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML). rDNA sequences corresponding to the same fragments from three non-ant hymenopteran species (a sawfly, a bee and a wasp) were employed as outgroups. These trees indicated that the ant subfamilies were clustered singly, and, among the seven subfamilies examined, Ponerinae and six other subfamilies are in a sister-groups relationship. The relationship among the six subfamilies, however, was not clarified. The phylogenetic trees constructed in the present study are not in contradiction to the tree from cladistic analysis of morphological data by Baroni Urbani et al. (1992) and the tree from morphological and molecular data (Ward and Brady, 2003), but are inconsistent with the traditional phylogeny. The present results thus raise a question as to the status of some traditionally employed "key" morphological characters. The present results also call for a reexamination of Amblyopone traditionally treated as a member of Ponerinae as belonging to a new subfamily.  相似文献   

17.
A remarkable diversity of life history strategies, geographic distributions, and morphological characters provide a rich substrate for investigating the evolutionary relationships of arhynchobdellid leeches. The phylogenetic relationships, using parsimony analysis, of the order Arhynchobdellida were investigated using nuclear 18S and 28S rDNA, mitochondrial 12S rDNA, and cytochrome c oxidase subunit I sequence data, as well as 24 morphological characters. Thirty-nine arhynchobdellid species were selected to represent the seven currently recognized families. Sixteen rhynchobdellid leeches from the families Glossiphoniidae and Piscicolidae were included as outgroup taxa. Analysis of all available data resolved a single most-parsimonious tree. The cladogram conflicted with most of the traditional classification schemes of the Arhynchobdellida. Monophyly of the Erpobdelliformes and Hirudiniformes was supported, whereas the families Haemadipsidae, Haemopidae, and Hirudinidae, as well as the genera Hirudo or Aliolimnatis, were found not to be monophyletic. The results provide insight on the phylogenetic positions for the taxonomically problematic families Americobdellidae and Cylicobdellidae, the genera Semiscolex, Patagoniobdella, and Mesobdella, as well as genera traditionally classified under Hirudinidae. The evolution of dietary and habitat preferences is examined.  相似文献   

18.
Colletidae comprise approximately 2500 species of bees primarily distributed in the southern continents (only two colletid genera are widely distributed: Colletes and Hylaeus). Previously published studies have failed to resolve phylogenetic relationships on a worldwide basis and this has been a major barrier to the progress of research regarding systematics and evolution of colletid bees. For this study, data from four nuclear gene loci: elongation factor-1alpha (F2 copy), opsin, wingless, and 28S rRNA were analyzed for 122 species of colletid bees, representing all subfamilies and tribes currently recognized; 22 species belonging to three other bee families were used as outgroups. Bayesian, maximum likelihood, and parsimony methods were employed to investigate the phylogenetic relationships within Colletidae and resulted in highly congruent and well-resolved trees. The phylogenetic results show that Colletidae are monophyletic and that all traditionally recognized subfamilies (except Paracolletinae) are also strongly supported as monophyletic. Our phylogenetic hypothesis provides a framework within which broad questions related to the taxonomy, biogeography, morphology, evolution, and ecology of colletid bees can be addressed.  相似文献   

19.
DNA data were collected from a number of acanthomorph fishes for 12S rDNA (30 sequences) and 16S rDNA (39 sequences) to investigate the phylogenetic relationships of genera within Cetomimidae (whalefishes) and of this family within the Stephanoberyciformes/Beryciformes assemblage. The Cetomimidae are apparently monophyletic. Within the family, species of Gyrinomimus and Cetomimus form a clade but the former genus is paraphyletic with respect to the latter. Cetostoma is sister to Ditropichthys rather than to Gyrinomimus plus Cetomimus as suggested by morphological analyses. Rondeletiidae + Cetomimidae + Barbourisiidae are shown, as expected from morphological analyses, as a monophyletic group in the 12S rDNA analyses, but not in the 16S rDNA or combined analyses, although the shortest trees showing the group require only one extra step in each case. These three families plus Melamphaidae (our sample of Stephanoberyciformes) are not shown as a group in any analysis, with Melamphaidae being sister to Berycidae in the 16S and combined analyses, but dispersed in the 12S analyses. Maximum-parsimony trees without imposed constraints are notably shorter than trees constrained to show ordinal groupings or either of the two main current hypotheses of Stephanoberyciformes/Beryciformes relationships. The length difference is highly significant for most comparisons using either 12S or 16S rDNA sets or their combination, and significant or nearly so for all comparisons. In particular, the Beryciformes is unlikely to be monophyletic. The Holocentridae are included, with high bootstrap and Bremer support, in a clade of non-beryciforms comprising the Gempylidae, Zeidae, and Atheriniformes (the only higher acanthomorphs sampled) and not with other Beryciform families. In these data, the Berycidae are the sister to the Melamphaidae, a stephanoberyciform family.  相似文献   

20.
Branchiobdellidans, or crayfish worms, are ectosymbiotic clitellate annelids associated primarily with freshwater crayfishes. The main objectives of our study were to infer a molecular phylogeny for the North American Branchiobdellida, examine its congruence with morphology-based hypotheses of relationships at the subfamily and genus level, and use our dataset to assess consistency of GenBank-archived branchiobdellidan sequences. We used nucleotide sequence data from two mtDNA genes (COI and 16S rDNA) and three nuclear genes (28S rDNA, 18S rDNA, and ITS1) to estimate phylogenetic relationships among 47 described and one undescribed species of Branchiobdellida. We recovered a monophyletic branchiobdellidan clade with generally short branch lengths, suggesting that a large portion of the taxon has likely undergone a recent and rapid radiation in North America. Results from our phylogenetic analyses indicate that current taxonomic groupings are largely unsupported by the molecular data. All four subfamilies are either paraphyletic or polyphyletic, and only three of seven sampled non-monotypic genera were monophyletic. We found a high rate (49%) of inconsistency in GenBank-archived sequences, over 70% of which can be attributed to field- or laboratory-based error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号