共查询到8条相似文献,搜索用时 15 毫秒
1.
Clathrin‐mediated endocytosis (CME) and clathrin‐independent endocytosis (CIE) co‐exist in most cells but little is known about their communication and coordination. Here we show that when CME was inhibited, endocytosis by CIE continued but endosomal trafficking of CIE cargo proteins was altered. CIE cargo proteins that normally traffic directly into Arf6‐associated tubules after internalization and avoid degradation (CD44, CD98 and CD147) now trafficked to lysosomes and were degraded. The endosomal tubules were also absent and Arf6‐GTP levels were elevated. The altered trafficking, loss of the tubular endosomal network and elevated Arf6‐GTP levels caused by inhibition of CME were rescued by expression of Rab35, a Rab associated with clathrin‐coated vesicles, or its effector ACAPs, Arf6 GTPase activating proteins (GAP) that inactivate Arf6. Furthermore, siRNA knockdown of Rab35 recreated the phenotype of CME ablation on CIE cargo trafficking without altering endocytosis of transferrin. These observations suggest that Rab35 serves as a CME detector and that loss of CME, or Rab35 input, leads to elevated Arf6‐GTP and shifts the sorting of CIE cargo proteins to lysosomes and degradation. 相似文献
2.
Alexey J. Merz 《Traffic (Copenhagen, Denmark)》2015,16(12):1318-1329
Endosomes are transportation nodes, mediating selective transport of soluble and transmembrane cargos to and from the Golgi apparatus, plasma membrane and lysosomes. As endosomes mature to become multivesicular bodies (MVBs), Endosomal Sorting Complexes Required for Transport (ESCRTs) selectively incorporate transmembrane cargos into vesicles that bud into the endosome lumen. Luminal vesicles and their cargoes are targeted for destruction when MVBs fuse with lysosomes. Common assays of endosomal luminal targeting, including fluorescence microscopy and monitoring of proteolytic cargo maturation, possess significant limitations. We present a quantitative assay system called LUCID (LUCiferase reporter of Intraluminal Deposition) that monitors exposure of chimeric luciferase‐cargo reporters to cytosol. Luciferase‐chimera signal increases when sorting to the endosome lumen is disrupted, and silencing of signal from the chimera depends upon luminal delivery of the reporter rather than proteolytic degradation. The system presents several advantages, including rapidity, microscale operation and a high degree of reproducibility that enables detection of subtle phenotypic differences. Luciferase reporters provide linear signal over an extremely broad dynamic range, allowing analysis of reporter traffic even at anemic levels of expression. Furthermore, LUCID reports transport kinetics when applied to inducible trafficking reporters. 相似文献
3.
The sequential action of five distinct endosomal‐sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT‐III is a highly ordered process. We show that the length of ESCRT‐III (Snf7) oligomers controls the size of MVB vesicles and addresses how ESCRT‐II regulates ESCRT‐III assembly. The first step of ESCRT‐III assembly is mediated by Vps20, which nucleates Snf7/Vps32 oligomerization, and serves as the link to ESCRT‐II. The ESCRT‐II subunit Vps25 induces an essential conformational switch that converts inactive monomeric Vps20 into the active nucleator for Snf7 oligomerization. Each ESCRT‐II complex contains two Vps25 molecules (arms) that generate a characteristic Y‐shaped structure. Mutant ‘one‐armed’ ESCRT‐II complexes with a single Vps25 arm are sufficient to nucleate Snf7 oligomerization. However, these oligomers cannot execute ESCRT‐III function. Both Vps25 arms provide essential geometry for the assembly of a functional ESCRT‐III complex. We propose that ESCRT‐II serves as a scaffold that nucleates the assembly of two Snf7 oligomers, which together are required for cargo sequestration and vesicle formation during MVB sorting. 相似文献
4.
Genetic Analysis of Yeast Sec24p Mutants Suggests Cargo Binding Is Not Co‐operative during ER Export
Roy Buchanan Andrew Kaufman Leslie Kung‐Tran Elizabeth A. Miller 《Traffic (Copenhagen, Denmark)》2010,11(8):1034-1043
Many eukaryotic secretory proteins are selected for export from the endoplasmic reticulum (ER) through their interaction with the Sec24p subunit of the coat protein II (COPII) coat. Three distinct cargo‐binding sites on yeast Sec24p have been described by biochemical, genetic and structural studies. Each site recognizes a limited set of peptide motifs or a folded structural domain, however, the breadth of cargo recognized by a given site and the dynamics of cargo engagement remain poorly understood. We aimed to gain further insight into the broader molecular function of one of these cargo‐binding sites using a non‐biased genetic approach. We exploited the in vivo lethality associated with mutation of the Sec24p B‐site to identify genes that suppress this phenotype when overexpressed. We identified SMY2 as a general suppressor that rescued multiple defects in Sec24p, and SEC22 as a specific suppressor of two adjacent cargo‐binding sites, raising the possibility of allosteric regulation of these domains. We generated a novel set of mutations in Sec24p that distinguish these two sites and examined the ability of Sec22p to rescue these mutations. Our findings suggest that co‐operativity does not influence cargo capture at these sites, and that Sec22p rescue occurs via its function as a retrograde SNARE. 相似文献
5.
Derek C. Prosser Duvinh Tran Allana Schooley Beverly Wendland Johnny K. Ngsee 《Traffic (Copenhagen, Denmark)》2010,11(10):1347-1362
The sorting nexins SNX1 and SNX2 are members of the retromer complex involved in protein sorting within the endocytic pathway. While retromer‐dependent functions of SNX1 and SNX2 have been well documented, potential retromer‐independent roles remain unclear. Here, we show that SNX1 and SNX2 interact with the Rac1 and RhoG guanine nucleotide exchange factor Kalirin‐7. Simultaneous overexpression of SNX1 or SNX2 and Kalirin‐7 in epithelial cells causes partial redistribution of both SNX isoforms to the plasma membrane, and results in RhoG‐dependent lamellipodia formation that requires functional Phox homology (PX) and Bin/Amphiphysin/Rvs (BAR) domains of SNX, but is Rac1‐ and retromer‐independent. Conversely, depletion of endogenous SNX1 or SNX2 inhibits Kalirin‐7‐mediated lamellipodia formation. Finally, we demonstrate that SNX1 and SNX2 interact directly with inactive RhoG, suggesting a novel role for these SNX proteins in recruiting an inactive Rho GTPase to its exchange factor. 相似文献
6.
Pamela Farfán Jiyeon Lee Jorge Larios Pablo Sotelo Guojun Bu María‐Paz Marzolo 《Traffic (Copenhagen, Denmark)》2013,14(7):823-838
Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)‐positive sorting endosomes that promotes the efficient recycling of low‐density lipoprotein receptor‐related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1‐positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17‐binding domain, we generated chimeric proteins in which the SNX17‐binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non‐polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin‐Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17‐binding receptors and the restricted function of SNX17 in the BSE . 相似文献
7.
Mojgan Shahriari Channa Keshavaiah David Scheuring Aneta Sabovljevic Peter Pimpl Rainer E. Häusler Martin Hülskamp Swen Schellmann 《The Plant journal : for cell and molecular biology》2010,64(1):71-85
The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant‐negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome‐specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development. Shortly after its formation, however, the large central vacuole is fragmented and finally disappears completely. Secretion assays with amylase fused to the vacuolar sorting signal of Sporamin show that dominant‐negative AtSKD1 inhibits vacuolar trafficking of the reporter that is instead secreted. In addition, trichomes expressing dominant‐negative AtSKD1 frequently contain multiple nuclei. Our results suggest that AtSKD1 contributes to vacuolar protein trafficking and thereby to the maintenance of the large central vacuole of plant cells, and might play a role in cell‐cycle regulation. 相似文献
8.
Shweta Tikoo Vinoth Madhavan Mansoor Hussain Edward S Miller Prateek Arora Anastasia Zlatanou Priyanka Modi Kelly Townsend Grant S Stewart Sagar Sengupta 《The EMBO journal》2013,32(12):1778-1792
Limiting the levels of homologous recombination (HR) that occur at sites of DNA damage is a major role of BLM helicase. However, very little is known about the mechanisms dictating its relocalization to these sites. Here, we demonstrate that the ubiquitin/SUMO‐dependent DNA damage response (UbS‐DDR), controlled by the E3 ligases RNF8/RNF168, triggers BLM recruitment to sites of replication fork stalling via ubiquitylation in the N‐terminal region of BLM and subsequent BLM binding to the ubiquitin‐interacting motifs of RAP80. Furthermore, we show that this mechanism of BLM relocalization is essential for BLM's ability to suppress excessive/uncontrolled HR at stalled replication forks. Unexpectedly, we also uncovered a requirement for RNF8‐dependent ubiquitylation of BLM and PML for maintaining the integrity of PML‐associated nuclear bodies and as a consequence the localization of BLM to these structures. Lastly, we identified a novel role for RAP80 in preventing proteasomal degradation of BLM in unstressed cells. Taken together, these data highlight an important biochemical link between the UbS‐DDR and BLM‐dependent pathways involved in maintaining genome stability. 相似文献