首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
Ist1 regulates Vps4 localization and assembly   总被引:1,自引:1,他引:0  
The ESCRT protein complexes are recruited from the cytoplasm and assemble on the endosomal membrane into a protein network that functions in sorting of ubiquitinated transmembrane proteins into the multivesicular body (MVB) pathway. This transport pathway packages cargo proteins into vesicles that bud from the MVB limiting membrane into the lumen of the compartment and delivers these vesicles to the lysosome/vacuole for degradation. The dissociation of ESCRT machinery by the AAA-type ATPase Vps4 is a necessary late step in the formation of MVB vesicles. This ATP-consuming step is regulated by several Vps4-interacting proteins, including the newly identified regulator Ist1. Our data suggest that Ist1 has a dual role in the regulation of Vps4 activity: it localizes to the ESCRT machinery via Did2 where it positively regulates recruitment of Vps4 and it negatively regulates Vps4 by forming an Ist1-Vps4 heterodimer, in which Vps4 cannot bind to the ESCRT machinery. The activity of the MVB pathway might be in part determined by outcome of these two competing activities.  相似文献   

2.
The endosomal sorting complex required for transport (ESCRT)-I protein complex functions in recognition and sorting of ubiquitinated transmembrane proteins into multivesicular body (MVB) vesicles. It has been shown that ESCRT-I contains the vacuolar protein sorting (Vps) proteins Vps23, Vps28, and Vps37. We identified an additional subunit of yeast ESCRT-I called Mvb12, which seems to associate with ESCRT-I by binding to Vps37. Transient recruitment of ESCRT-I to MVBs results in the rapid degradation of Mvb12. In contrast to mutations in other ESCRT-I subunits, which result in strong defects in MVB cargo sorting, deletion of MVB12 resulted in only a partial sorting phenotype. This trafficking defect was fully suppressed by overexpression of the ESCRT-II complex. Mutations in MVB12 did not affect recruitment of ESCRT-I to MVBs, but they did result in delivery of ESCRT-I to the vacuolar lumen via the MVB pathway. Together, these observations suggest that Mvb12 may function in regulating the interactions of ESCRT-I with cargo and other proteins of the ESCRT machinery to efficiently coordinate cargo sorting and release of ESCRT-I from the MVB.  相似文献   

3.
ESCRTs (endosomal sorting complexes required for transport) bind and sequester ubiquitinated membrane proteins and usher them into multivesicular bodies (MVBs). As Ubiquitin (Ub)-binding proteins, ESCRTs themselves become ubiquitinated. However, it is unclear whether this regulates a critical aspect of their function or is a nonspecific consequence of their association with the Ub system. We investigated whether ubiquitination of the ESCRTs was required for their ability to sort cargo into the MVB lumen. Although we found that Rsp5 was the main Ub ligase responsible for ubiquitination of ESCRT-0, elimination of Rsp5 or elimination of the ubiquitinatable lysines within ESCRT-0 did not affect MVB sorting. Moreover, by fusing the catalytic domain of deubiquitinating peptidases onto ESCRTs, we could block ESCRT ubiquitination and the sorting of proteins that undergo Rsp5-dependent ubiquitination. Yet, proteins fused to a single Ub moiety were efficiently delivered to the MVB lumen, which strongly indicates that a single Ub is sufficient in sorting MVBs in the absence of ESCRT ubiquitination.  相似文献   

4.
A concentric circle model of multivesicular body cargo sorting   总被引:4,自引:0,他引:4  
Targeting of ubiquitylated transmembrane proteins into luminal vesicles of endosomal multivesicular bodies (MVBs) depends on their recognition by endosomal sorting complexes required for transport (ESCRTs), which are also required for MVB vesicle formation. The model originally proposed for how ESCRTs function succinctly summarizes much of the protein-protein interaction and genetic data but oversimplifies the coordination of cargo recognition and cannot explain why ESCRTs are required for the budding of MVB vesicles. Recent structural and functional studies of ESCRT complexes suggest an alternative model that might direct the next series of breakthroughs in understanding protein sorting through the MVB pathway.  相似文献   

5.
Ubiquitin (Ub) sorting receptors facilitate the targeting of ubiquitinated membrane proteins into multivesicular bodies (MVBs). Ub-binding domains (UBDs) have been described in several endosomal sorting complexes required for transport (ESCRT). Using available structural information, we have investigated the role of the multiple UBDs within ESCRTs during MVB cargo selection. We found a novel UBD within ESCRT-I and show that it contributes to MVB sorting in concert with the known UBDs within the ESCRT complexes. These experiments reveal an unexpected level of coordination among the ESCRT UBDs, suggesting that they collectively recognize a diverse set of cargo rather than act sequentially at discrete steps.  相似文献   

6.
The three endosomal sorting complexes required for transport (ESCRTs) are integral to the degradation of endocytosed membrane proteins and multivesicular body (MVB) biogenesis. Here, we review evidence that ESCRTs have evolved as a specialized machinery for the degradative sorting of ubiquitinated membrane proteins and we highlight recent studies that have shed light on the mechanisms by which these complexes mediate protein sorting, MVB biogenesis, tumour suppression and viral budding. We also discuss evidence that some ESCRT subunits have evolved additional functions that are unrelated to membrane trafficking.  相似文献   

7.
ESCRT & Co     
Components of the ESCRT (endosomal sorting complex required for transport) machinery mediate endosomal sorting of ubiquitinated membrane proteins. They are key regulators of biological processes important for cell growth and survival, such as growth‐factor‐mediated signalling and cytokinesis. In addition, enveloped viruses, such as HIV‐1, hijack and utilize the ESCRTs for budding during virus release and infection. Obviously, the ESCRT‐facilitated pathways require tight regulation, which is partly mediated by a group of interacting proteins, for which our knowledge is growing. In this review we discuss the different ESCRT‐modulating proteins and how they influence ESCRT‐dependent processes, for example, by acting as positive or negative regulators or by providing temporal and spatial control. A number of the interactors influence the classical ESCRT‐mediated process of endosomal cargo sorting, for example, by modulating the interaction between ubiquitinated cargo and the ESCRTs. Certain accessory proteins have been implicated in regulating the activity or steady‐state expression levels of the ESCRT components, whereas other interactors control the cellular localization of the ESCRTs, for example, by inducing shuttling between cytosol and nucleus or endosomes. In conclusion, the discovery of novel interactors has and will extend our knowledge of the biological roles of ESCRTs.  相似文献   

8.
Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.  相似文献   

9.
Sorting of ubiquitinated endosomal membrane proteins into the MVB pathway is executed by the class E Vps protein complexes ESCRT-I, -II, and -III, and the AAA-type ATPase Vps4. This study characterizes ESCRT-II, a soluble approximately 155 kDa protein complex formed by the class E Vps proteins Vps22, Vps25, and Vps36. This protein complex transiently associates with the endosomal membrane and thereby initiates the formation of ESCRT-III, a membrane-associated protein complex that functions immediately downstream of ESCRT-II during sorting of MVB cargo. ESCRT-II in turn functions downstream of ESCRT-I, a protein complex that binds to ubiquitinated endosomal cargo. We propose that the ESCRT complexes perform a coordinated cascade of events to select and sort MVB cargoes for delivery to the lumen of the vacuole/lysosome.  相似文献   

10.
Three large protein complexes known as ESCRT I, ESCRT II and ESCRT III drive the progression of ubiquitinated membrane cargo from early endosomes to lysosomes. Several steps in this process critically depend on PtdIns3P, the product of the class III phosphoinositide 3-kinase. Our work has provided insights into the architecture, membrane recruitment and functional interactions of the ESCRT machinery. The fan-shaped ESCRT I core and the trilobal ESCRT II core are essential to forming stable, rigid scaffolds that support additional, flexibly-linked domains, which serve as gripping tools for recognizing elements of the MVB (multivesicular body) pathway: cargo protein, membranes and other MVB proteins. With these additional (non-core) domains, ESCRT I grasps monoubiquitinated membrane proteins and the Vps36 subunit of the downstream ESCRT II complex. The GLUE (GRAM-like, ubiquitin-binding on Eap45) domain extending beyond the core of the ESCRT II complex recognizes PtdIns3P-containing membranes, monoubiquitinated cargo and ESCRT I. The structure of this GLUE domain demonstrates that it has a split PH (pleckstrin homology) domain fold, with a non-typical phosphoinositide-binding pocket. Mutations in the lipid-binding pocket of the ESCRT II GLUE domain cause a strong defect in vacuolar protein sorting in yeast.  相似文献   

11.
As a mechanism of signal attenuation, receptors for growth factors, peptide hormones and cytokines are internalized in response to ligand binding, followed by degradation in lysosomes. Receptor ubiquitination is a key signal for such downregulation, and four protein complexes known as endosomal sorting complex required for transport (ESCRT)-0, -I, -II and -III have been identified as the machinery required for degradative endosomal sorting of ubiquitinated membrane proteins in yeast and metazoans. Three of these complexes contain ubiquitin-binding domains whereas ESCRT-III instead recruits deubiquitinating enzymes. The concerted action of the ESCRTs not only serves to sort ubiquitinated cargo but is also thought to cause inward vesiculation of endosomal membranes, thereby mediating biogenesis of multivesicular endosomes (MVEs). Because ligand-mediated receptor downregulation plays an important role in signal attenuation, it is not surprising that dysfunction of ESCRT components is associated with disease. In this review we discuss the possible roles of ESCRTs in protection against cancer, neurodegenerative diseases and bacterial infections, and we highlight the fact that many RNA viruses exploit the ESCRT machinery for the final abscission step of their budding from cells. We also review the additional functions of ESCRT proteins in cytokinesis and discuss how these may be related to ESCRT-associated pathologies.  相似文献   

12.
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs Vps4 activity to the dissociation of ESCRT-III but has no role in the dissociation of ESCRT-I or -II. Surprisingly, vesicle budding into the endosome lumen occurs in the absence of Did2 function even though Did2 is required for the efficient sorting of MVB cargo proteins into lumenal vesicles. This uncoupling of MVB cargo sorting and lumenal vesicle formation suggests that the Vps4-mediated dissociation of ESCRT-III is an essential step in the sorting of cargo proteins into MVB vesicles but is not a prerequisite for the budding of vesicles into the endosome lumen.  相似文献   

13.
Subunits of the endosomal sorting complex required for transport (ESCRT) were identified as components of a molecular machinery that sorts ubiquitinated membrane proteins into the intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs) for subsequent delivery to the lumen of lysosomes or related organelles. As many of the membrane proteins that undergo ESCRT-mediated sorting are signalling receptors that are ubiquitinated in response to ligand binding, ESCRT subunits have been hypothesized to play a crucial role in attenuation of cell signalling by mediating ligand-induced receptor degradation. Here we discuss this concept based on the examples from loss-of-function studies in model organisms and cell lines. The emerging picture is that ESCRTs are indeed involved in downregulation of receptor signalling pathways associated with cell survival, proliferation and polarity. In addition, the recent discovery of a positive role for the ESCRT pathway in Wnt signalling through sequestration of an inhibitory cytosolic component into MVEs illustrates that ESCRTs may also control signalling in ways that are independent of degradative receptor sorting.  相似文献   

14.
The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long‐lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo‐lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo‐lysosomal degradative pathway—loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration.   相似文献   

15.
The emerging shape of the ESCRT machinery   总被引:8,自引:0,他引:8  
The past two years have seen an explosion in the structural understanding of the endosomal sorting complex required for transport (ESCRT) machinery that facilitates the trafficking of ubiquitylated proteins from endosomes to lysosomes via multivesicular bodies (MVBs). A common organization of all ESCRTs is a rigid core attached to flexibly connected modules that recognize other components of the MVB pathway. Several previously unsuspected key links between multiple ESCRT subunits, phospholipids and ubiquitin have now been elucidated, which, together with the detailed morphological analyses of ESCRT-depletion phenotypes, provide new insights into the mechanism of MVB biogenesis.  相似文献   

16.
The endosomal sorting complexes required for transport (ESCRTs) are required to sort integral membrane proteins into intralumenal vesicles of the multivesicular body (MVB). Mutations in the ESCRT-III subunit CHMP2B were recently associated with frontotemporal dementia and amyotrophic lateral sclerosis (ALS), neurodegenerative diseases characterized by abnormal ubiquitin-positive protein deposits in affected neurons. We show here that autophagic degradation is inhibited in cells depleted of ESCRT subunits and in cells expressing CHMP2B mutants, leading to accumulation of protein aggregates containing ubiquitinated proteins, p62 and Alfy. Moreover, we find that functional MVBs are required for clearance of TDP-43 (identified as the major ubiquitinated protein in ALS and frontotemporal lobar degeneration with ubiquitin deposits), and of expanded polyglutamine aggregates associated with Huntington's disease. Together, our data indicate that efficient autophagic degradation requires functional MVBs and provide a possible explanation to the observed neurodegenerative phenotype seen in patients with CHMP2B mutations.  相似文献   

17.
Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or polyubiquitin chains and has been generally linked to protein degradation, however, distinct types of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. Over forty mammalian G protein‐coupled receptors (GPCRs) have been reported to be ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for degradation by lysosome, which is mediated by the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, and the proteasome. This has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain GPCRs and canonical ubiquitin‐binding ESCRTs are not required for receptor degradation and revealed that diverse and complex pathways exist to regulate endo‐lysosomal sorting of GPCRs. In other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls GPCR endo‐lysosomal sorting and beyond.   相似文献   

18.
吴凡  沈锦波  胡帅 《植物学报》2022,57(5):697-712
真核细胞中, 功能高度保守的内体蛋白分选转运装置ESCRT在胞吞途径和蛋白分泌途径中均扮演重要角色。植物细胞中, 该装置包含ESCRT-I、ESCRT-II、ESCRT-III和VPS4/SKD1复合体4个亚基, 但缺乏ESCRT-0亚基。ESCRT的每个亚基均由多个蛋白构成。目前, 针对ESCRT的研究已经证实, 其在泛素化的膜蛋白进入多囊泡体/液泡前体(MVB/PVC)内腔过程中发挥重要调控作用; 同时在自噬途径以及应对环境胁迫等方面也具有重要的调节功能。该文首先介绍了植物中ESCRT复合体的组成及生物学功能, 然后总结了植物中特有ESCRT复合体组分蛋白的最新研究进展, 最后探讨了有关ESCRT复合体研究中尚未解决的重要科学问题。  相似文献   

19.
Lysosomes (vacuoles in yeast) are master regulators of metabolism and protein turnover, but how they degrade their own resident proteins is unclear. Recently, multiple models have been proposed explaining yeast vacuole protein sorting, but the role of the ESCRT pathway was unclear. In this JCB issue, work from Yang et al. (https://doi.org/10.1083/jcb.202012104) highlights how the ESCRT pathway localizes to the vacuole surface to execute protein sorting of its resident proteins.

Lysosomes are key metabolic organelles that influence nutrient sensing, protein trafficking, lipid homeostasis, and catabolic metabolism (1). Because of their many roles, how lysosomes receive and degrade proteins has been a pervasive question in cell biology, and has driven the discovery of multiple trafficking pathways that deliver proteins from different regions of the cell to the lysosome for turnover. In budding yeast, the vacuole (functionally equivalent to the lysosome) is a superb model to dissect the mechanisms of endolysosomal trafficking. However, how the vacuole/lysosome senses and degrades its own resident proteins has remained mysterious. This is a critical question, since the vacuole/lysosome surface is home to many nutrient and lipid transporters, which must be selectively maintained or degraded in response metabolic cues to enable cell homeostasis.Recently, a flurry of papers were published with models explaining how the turnover of resident vacuole proteins is achieved. Two opposing models emerged (Fig. 1). In one, the ESCRT (endosomal sorting complexes required for transport) proteins, which are traditionally known to sort cargoes on the endosome surface into intralumenal vesicles that push into the endosome, were proposed to localize to the vacuole surface and execute a topologically similar protein sorting mechanism (albeit now on a different organelle; 2, 3, 4). However, another model called the intralumenal fragment (ILF) model proposed a radically different mechanism. Here, the homotypic fusion of the vacuole with itself could create a bubble-like fragment inside, containing vacuole surface proteins to be degraded. Critically, the formation of this fragment would be ESCRT-independent but require other membrane trafficking machinery like Rab7 (5, 6, 7). Paradoxically, both models were implicated in sorting the same vacuole proteins. Whether these two models were mutually exclusive, and how they related to one another, was unclear.Open in a separate windowFigure 1.Cartoon schematic of the models for resident vacuole protein turnover. Left: ESCRT-dependent sorting of vacuole proteins via recruitment of ESCRTs to ubiquitinated surface proteins, which are sorted into a vesicle that protrudes into the vacuole lumen and is degraded. Right: ILF pathway showing an ESCRT-independent selective sorting of proteins into a fragment, which via homotypic vacuole fusion is deposited into the vacuole lumen and then degraded.In a recent paper published by JCB, Yang and colleagues (8) shed new light on the mystery of how resident vacuole proteins are degraded and resolve several of the issues between these two contrasting models. To begin, Yang et al. used Western blotting and a microfluidics-based imaging system to monitor GFP-tagged vacuole proteins. Capitalizing on a tetracycline (TET)-OFF system that enabled them to essentially conduct pulse-chase assays, they could monitor each GFP-tagged protein and its turnover kinetics following treatment with rapamycin, which initiated the degradation process. They learned that some proteins like Zrt3-GFP (a zinc transporter) were first sorted into foci on the vacuole surface, then a short time later accumulated in the vacuole lumen, consistent with a sorting process that enabled Zrt3-GFP breakdown by vacuolar proteases. Indeed, Western blotting revealed free GFP accumulation over time as the Zrt3-GFP was degraded, indicating the fusion protein was being broken down in the vacuole lumen, leaving behind soluble GFP.Using this experimental setup, they next examined a vacuole protein previously reported to be a substrate of the ILF pathway, Fth1 (5). Fth1 had been proposed to be selectively sorted via the ILF pathway, whereas its binding partner Fet5 was not. However, Yang et al. were able to show that these proteins coimmunoprecipitated together, suggesting they exist in a complex and were unlikely to be separated. Indeed, deletion of Fth1 caused Fet5 to be trapped at the ER, consistent with it needing Fth1 for stability. Furthermore, time-lapse imaging indicated that Fth1 turnover was very slow, in contrast to earlier reports that Fth1 was constitutively turned over via the ILF pathway. Motivated by these observations, they next examined other ILF cargoes reported to be degraded by the ILF pathway following exposure of yeast to heat or the drug cycloheximide. Again capitalizing on their time-lapse imaging system and Western blotting, they failed to observe significant turnover of these proteins, in contrast to previous work.A key difference between the two models is dependence on the ESCRT pathway. To further dissect, Yang et al. used imaging to interrogate how loss of ESCRT machinery impacted vacuole protein dynamics and degradation. By monitoring vacuole proteins whose turnover was stimulated by rapamycin, they observed that yeast lacking the ESCRT component Vps4 failed to sort Zrt3 and other cargoes into the vacuole. This argued that their degradation was ESCRT dependent, and likely not through the ILF pathway. Serendipitously, time-lapse imaging experiments also detected occasional ILF-like structures within the vacuole. However, imaging revealed that ILF structures were rare, and often contained the protein Zrc1-mCherry, which is stable and not degraded. Collectively, this argued that ESCRT machinery is required for the turnover of several vacuole proteins, and that the ILF system is likely not the predominant mechanism of resident vacuole protein degradation.Finally, Yang et al. used their imaging platform to interrogate how ubiquitin and the ESCRTs influence vacuole protein turnover. They took advantage of an inducible degradation system called RapIDeg that uses an FK506-binding protein–FKBP Rapamycin-binding domain system to inducibly attach ubiquitin to a GFP-tagged vacuole protein by adding rapamycin. Strikingly, this revealed that within 10–30 min of ubiquitination, the vacuole protein was sorted into bright foci on the membrane surface that contained ESCRT machinery, strongly suggesting this protein sorting was ESCRT dependent.Collectively, the data argue that many vacuole proteins are degraded via a ubiquitin and ESCRT-dependent pathway that operates on the vacuole surface in a manner topologically similar to the formation of multi-vesicular bodies at endosomes (Fig. 1). In this model, ubiquitination of vacuole proteins attracts ESCRT machinery, which bend the membrane away from the cytoplasm to create a vesicle within the vacuole, which is subsequently degraded by vacuolar proteases. Although ILFs were observed in this and previous studies, these structures are rare, and appear to lack the ability to selectively sort proteins.It should be noted that this study and the earlier ILF pathway studies used very different methodologies. The ILF studies relied on purified vacuoles in a cell-free system (5, 7), whereas Yang et al. employed in vivo time-lapse imaging and blotting (8). Since purified vacuoles lack the full cellular ubiquitination machinery, it is feasible that ESCRT-independent membrane remodeling may occur in vitro. Relatedly, it is possible that the ILF system may sort other proteins not examined by Yang et al. However, Yang clearly establishes that several vacuole proteins are sorted via an ESCRT-dependent pathway that acts on the vacuole surface. Second, it is worth noting that ILF structures are observed in several studies of vacuole remodeling. Although likely not a major mechanism for protein sorting, these ILF structures may provide means for the vacuole to control its membrane composition and even size. Third, the work of Yang et al. adds to the continually growing list of roles for ESCRTs in cellular homeostasis. ESCRTs now have established roles at endosomes, the plasma membrane, the nuclear envelope, and yeast vacuole. This versatile machinery is continually used to execute its topologically unique membrane remodeling. This is important to understand, as experiments that perturb or block ESCRT function likely impact multiple cellular processes and have pleiotropic effects.Given these insights, questions still remain. Although Yang et al. shed light on how the yeast vacuole consumes its proteins, how this system relates to mammalian lysosomes and how distinct resident proteins are selectively degraded or retained on the surface during metabolic cues remains to be explored. It is also unclear whether the ESCRT pathway, which utilizes several distinct complexes, operates completely the same on vacuoles as it does at other organelles. How ESCRTs function on vacuoles/lysosomes is of growing importance since ESCRTs have also been shown to facilitate micro-autophagy, delivering substrates such as lipid droplets into the vacuole lumen (9). These and other questions will no doubt drive further studies of the amazing yeast vacuole and mammalian lysosome, and how they organize and govern the lives of their many resident proteins.  相似文献   

20.
The multivesicular body(MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport(ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley(Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies(PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号