首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to overcome the problems associated with LiNiO2, the solid solution series of lithium nickel‐metal oxides, Li[Ni1–xMx]O2 (with M = Co, Mn, Al, Ti, Mg, etc.), have been investigated as favorable cathode materials for high‐energy and high‐power lithium‐ion batteries. However, along with the improvement in the electrochemical properties in Ni‐based cathode materials, the thermal stability has been a great concern, and thus violent reaction of the cathode with the electrolyte needs to be avoided. Here, we report a heterostructured Li[Ni0.54Co0.12Mn0.34]O2 cathode material which possesses both high energy and safety. The core of the particle is Li[Ni0.54Co0.12Mn0.34]O2 with a layered phase (R3‐m) and the shell, with a thickness of < 0.5 μm, is a highly stable Li1+x[CoNixMn2–x]2O4 spinel phase (Fd‐3m). The material demonstrates reversible capacity of 200 mAhg‐1 and retains 95% capacity retention under the most severe test condition of 60 °C. In addition, the amount of oxygen evolution from the lattice in the cathode with two heterostructures is reduced by 70%, compared to the reference sample. All these results suggest that the bulk Li[Ni0.54Co0.12Mn0.34]O2 consisting of two heterostructures satisfy the requirements for hybrid electric vehicles, power tools, and mobile electronics.  相似文献   

2.
A multicompositional particulate Li[Ni0.9Co0.05Mn0.05]O2 cathode in which Li[Ni0.94Co0.038Mn0.022]O2 at the particle center is encapsulated by a 1.5 µm thick concentration gradient (CG) shell with the outermost surface composition Li[Ni0.841Co0.077Mn0.082]O2 is synthesized using a differential coprecipitation process. The microscale compositional partitioning at the particle level combined with the radial texturing of the refined primary particles in the CG shell layer protracts the detrimental H2 → H3 phase transition, causing sharp changes in the unit cell dimensions. This protraction, confirmed by in situ X‐ray diffraction and transmission electron microscopy, allows effective dissipation of the internal strain generated upon the H2 → H3 phase transition, markedly improving cycling performance and thermochemical stability as compared to those of the conventional single‐composition Li[Ni0.9Co0.05Mn0.05]O2 cathodes. The compositionally partitioned cathode delivers a discharge capacity of 229 mAh g?1 and exhibits capacity retention of 88% after 1000 cycles in a pouch‐type full cell (compared to 68% for the conventional cathode). Thus, the proposed cathode material provides an opportunity for the rational design and development of a wide range of multifunctional cathodes, especially for Ni‐rich Li[NixCoyMn1‐x‐y]O2 cathodes, by compositionally partitioning the cathode particles and thus optimizing the microstructural response to the internal strain produced in the deeply charged state.  相似文献   

3.
Rationally designed P2‐K0.75[Ni1/3Mn2/3]O2 is introduced as a novel cathode material for potassium‐ion batteries (KIBs). P2‐K0.75[Ni1/3Mn2/3]O2 cathode material designed through electrochemical ion‐exchange from P2‐Na2/3[Ni1/3Mn2/3]O2 exhibits satisfactory electrode performances; 110 mAh g?1 (20 mA g?1) retaining 86% of capacity for 300 cycles and unexpectedly high reversible capacity of about 91 mAh g?1 (1400 mA g?1) with excellent capacity retention of 83% over 500 cycles. According to theoretical and experimental investigations, the overall potassium storage mechanism of P2‐K0.75[Ni1/3Mn2/3]O2 is revealed to be a single‐phase reaction with small lattice change upon charge and discharge, presenting the Ni4+/2+ redox couple reaction. Such high power capability is possible through the facile K+ migration in the K0.75[Ni1/3Mn2/3]O2 structure with a low activation barrier energy of ≈210 meV. These findings indicate that P2‐K0.75[Ni1/3Mn2/3]O2 is a promising candidate cathode material for high‐rate and long‐life KIBs.  相似文献   

4.
The high‐energy‐density, Li‐rich layered materials, i.e., xLiMO2(1‐x)Li2MnO3, are promising candidate cathode materials for electric energy storage in plug‐in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). The relatively low rate capability is one of the major problems that need to be resolved for these materials. To gain insight into the key factors that limit the rate capability, in situ X‐ray absorption spectroscopy (XAS) and X‐ray diffraction (XRD) studies of the cathode material, Li1.2Ni0.15Co0.1Mn0.55O2 [0.5Li(Ni0.375Co0.25 Mn0.375)O2·0.5Li2MnO3], are carried out. The partial capacity contributed by different structural components and transition metal elements is elucidated and correlated with local structure changes. The characteristic reaction kinetics for each element are identified using a novel time‐resolved XAS technique. Direct experimental evidence is obtained showing that Mn sites have much poorer reaction kinetics both before and after the initial activation of Li2MnO3, compared to Ni and Co. These results indicate that Li2MnO3 may be the key component that limits the rate capability of Li‐rich layered materials and provide guidance for designing Li‐rich layered materials with the desired balance of energy density and rate capability for different applications.  相似文献   

5.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

6.
Boron‐doped Li[Ni0.90Co0.05Mn0.05]O2 cathodes are synthesized by adding B2O3 during the lithiation of the hydroxide precursor. Density functional theory confirms that boron doping at a level as low as 1 mol% alters the surface energies to produce a highly textured microstructure that can partially relieve the intrinsic internal strain generated during the deep charging of Li[Ni0.90Co0.05Mn0.05]O2. The 1 mol% B‐Li[Ni0.90Co0.05Mn0.05]O2 cathode thus delivers a discharge capacity of 237 mAh g?1 at 4.3 V, with an outstanding capacity retention of 91% after 100 cycles at 55 °C, which is 15% higher than that of the undoped Li[Ni0.90Co0.05Mn0.05]O2 cathode. This proposed synthesis strategy demonstrates that an optimal microstructure exists for extending the cycle life of Ni‐rich Li[Ni1‐xyCoxMny]O2 cathodes that have an inadequate cycling stability in electric vehicle applications and indicates that an optimal microstructure can be achieved through surface energy modification.  相似文献   

7.
Spinel‐layered composites, where a high‐voltage spinel is incorporated in a layered lithium‐rich (Li‐rich) cathode material with a nominal composition x{0.6Li2MnO3 · 0.4[LiCo0.333Mn0.333Ni0.333]O2} · (1 – x) Li[Ni0.5Mn1.5]O4 (x = 0, 0.3, 0.5, 0.7, 1) are synthesized via a hydroxide assisted coprecipitation route to generate high‐energy, high‐power cathode materials for Li‐ion batteries. X‐ray diffraction patterns and the cyclic voltammetry investigations confirm the presence of both the parent components in the composites. The electrochemical investigations performed within a wide potential window show an increased structural stability of the spinel component when incorporated into the composite environment. All the composite materials exhibit initial discharge capacities >200 mAh g–1. The compositions with x = 0.5 and 0.7 show excellent cycling stability among the investigated materials. Moreover, the first cycle Coulombic efficiency achieve a dramatic improvement with the incorporation of the spinel component. More notably, the composite materials with increased spinel component exhibit superior rate capability compared with the parent Li‐rich material especially together with the highest capacity retention for x = 0.5 composition, making this as the optimal high‐energy high‐power material. The mechanisms involved in the symbiotic relationship of the spinel and layered Li‐rich components in the above composites are discussed.  相似文献   

8.
Poor cycling stability is one of the key scientific issues needing to be solved for Li‐ and Mn‐rich layered oxide cathode. In this paper, sodium carboxymethyl cellulose (CMC) is first used as a novel binder in Li1.2Ni0.13Co0.13Mn0.54O2 cathode to enhance its cycling stability. Electrochemical performance is conducted by galvanostatic charge and discharge. Structure and morphology are characterized by X‐ray diffraction, scanning electronic microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy. Results reveal that the CMC as binder can not only stabilize the electrode structure by preventing the electrode materials to detach from the current collector but also suppress the voltage fading of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode due to Na+ ions doping. Most importantly, the dissolution of metal elements from the cathode materials into the electrolyte is also inhibited.  相似文献   

9.
A new and promising P2‐type layered oxide, Na5/6[Li1/4Mn3/4]O2 is prepared using a solid‐state method. Detailed crystal structures of the sample are analyzed by synchrotron X‐ray diffraction combined with high‐resolution neutron diffraction. P2‐type Na5/6[Li1/4Mn3/4]O2 consists of two MeO2 layers with partial in‐plane √3a × √3a‐type Li/Mn ordering. Na/Li ion‐exchange in a molten salt results in a phase transition accompanied with glide of [Li1/4Mn3/4]O2 layers without the destruction of in‐plane cation ordering. P2‐type Na5/6[Li1/4Mn3/4]O2 translates into an O2‐type layered structure with staking faults as the result of ion‐exchange. Electrode performance of P2‐type Na5/6[Li1/4Mn3/4]O2 and O2‐type Lix[Li1/4Mn3/4]O2 is examined and compared in Na and Li cells, respectively. Both samples show large reversible capacity, ca. 200 mA h g?1, after charge to high voltage regardless of the difference in charge carriers. Structural analysis suggests that in‐plane structural rearrangements, presumably associated with partial oxygen loss, occur in both samples after charge to a high‐voltage region. Such structural activation process significantly influences electrode performance of the P2/O2‐type phases, similar to O3‐type Li2MnO3‐based materials. Crystal structures, phase‐transition mechanisms, and the possibility of the P2/O2‐type phases as high‐capacity and long‐cycle‐life electrode materials with the multi‐functionality for both rechargeable Li/Na batteries are discussed in detail.  相似文献   

10.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

11.
Li[Ni0.9Co0.1]O2 (NC90), Li[Ni0.9Co0.05Mn0.05]O2 (NCM90), and Li[Ni0.9Mn0.1]O2 (NM90) cathodes are synthesized for the development of a Co‐free high‐energy‐density cathode. NM90 maintains better cycling stability than the two Co‐containing cathodes, particularly under harsh cycling conditions (a discharge capacity of 236 mAh g?1 with a capacity retention of 88% when cycled at 4.4 V under 30 °C and 93% retention when cycled at 4.3 V under 60 °C after 100 cycles). The reason for the enhanced stability is mainly the ability of NM90 to absorb the strain associated with the abrupt anisotropic lattice contraction/extraction and to suppress the formation of microcracks, in addition to enhanced chemical stability from the increased presence of stable Mn4+. Although the absence of Co deteriorates the rate capability, this can be overcome as the rate capability of the NM90 approaches that of the NCM90 when cycled at 60 °C. The long‐term cycling stability of NM90 is confirmed in a full cell, demonstrating that it is one of the most promising Co‐free cathodes for high‐energy‐density applications. This study not only provides insight into redefining the role of Mn in a Ni‐rich cathode, it also represents a clear breakthrough in achieving a commercially viable Co‐free Ni‐rich layered cathode.  相似文献   

12.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   

13.
Ni‐rich Li[NixCoyMn1?x?y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g?1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g?1 at 3.0–4.3 V) and rate capability (152.7 mAh g?1 at a current density of 1000 mA g?1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.  相似文献   

14.
Recently, anionic‐redox‐based materials have shown promising electrochemical performance as cathode materials for sodium‐ion batteries. However, one of the limiting factors in the development of oxygen‐redox‐based electrodes is their low operating voltage. In this study, the operating voltage of oxygen‐redox‐based electrodes is raised by incorporating nickel into P2‐type Na2/3[Zn0.3Mn0.7]O2 in such a way that the zinc is partially substituted by nickel. As designed, the resulting P2‐type Na2/3[(Ni0.5Zn0.5)0.3Mn0.7]O2 electrode exhibits an average operating voltage of 3.5 V and retains 95% of its initial capacity after 200 cycles in the voltage range of 2.3–4.6 V at 0.1C (26 mA g?1). Operando X‐ray diffraction analysis reveals the reversible phase transition: P2 to OP4 phase on charge and recovery to the P2 phase on discharge. Moreover, ex situ X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies reveal that the capacity is generated by the combination of Ni2+/Ni4+ and O2?/O1? redox pairs, which is supported by first‐principles calculations. It is thought that this kind of high voltage redox species combined with oxygen redox could be an interesting approach to further increase energy density of cathode materials for not only sodium‐based rechargeable batteries, but other alkali‐ion battery systems.  相似文献   

15.
The synthesis of a new layered cathode material, Na0.5[Ni0.23Fe0.13Mn0.63]O2, and its characterization in terms of crystalline structure and electrochemical performance in a sodium cell is reported. X‐ray diffraction studies and high resolution scanning electron microscopy images reveal a well‐defined P2‐type layered structure, while the electrochemical tests demonstrate excellent characteristics in terms of high capacity and cycle life. This performance, the low cost, and the environmental compatibility of its component poses Na0.5[Ni0.23Fe0.13Mn0.63]O2 to be among the most promising materials for the next generation of sodium‐ion batteries.  相似文献   

16.
Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li‐rich Li(Lix/3Ni(3/8‐3x/8)Co(1/4‐x/4)Mn(3/8+7x/24)O2 (x = 0.6, HLR) and low Li‐rich Li(Lix/3Ni(1/3‐x/3)Co(1/3‐x/3)Mn(1/3+x/3)O2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the end of charge. Density functional theory calculations show the presence of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li‐rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. Once the high voltage plateau is reached, the lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate.  相似文献   

17.
Li and Mn‐rich layered cathodes, despite their high specific capacity, suffer from capacity fading and discharge voltage decay upon cycling. Both specific capacity and discharge voltage of Li and Mn‐rich cathodes are stabilized upon cycling by optimized Al doping. Doping Li and Mn‐rich cathode materials Li1.2Ni0.16Mn0.56Co0.08O2 by Al on the account of manganese (as reflected by their stoichiometry) results in a decrease in their specific capacity but increases pronouncedly their stability upon cycling. Li1.2Ni0.16Mn0.51Al0.05Co0.08O2 exhibits 96% capacity retention as compared to 68% capacity retention for Li1.2Ni0.16Mn0.56Co0.08O2 after 100 cycles. This doping also reduces the decrease in the average discharge voltage upon cycling, which is the longstanding fatal drawback of these Li and Mn‐rich cathode materials. The electrochemical impedance study indicates that doping by Al has a surface stabilization effect on these cathode materials. The structural analysis of cycled electrodes by Raman spectroscopy suggests that Al doping also has a bulk stabilizing effect on the layered LiMO2 phase resulting in the better electrochemical performance of Al doped cathode materials as compared to the undoped counterpart. Results from a prolonged systematic work on these cathode materials are presented and the best results that have ever been obtained are reported.  相似文献   

18.
Mechanochemical synthesis of Cu3P in the presence of n‐dodecane results in a material with a secondary particle size distribution of 10 μm, secondary particles which consist of homogeneously agglomerated 20 nm primary particles. The electrochemical performance of Cu3P with lithium is influenced by the reaction depth, in other words by the lower potential cut‐off. During the electrochemical reaction, the displacement of copper by lithium from the Cu3P structure until the formation of Li3P and Cu deteriorates the capacity retention. Improved performance was obtained when the charge potential was limited to 0.50 V (vs. Li/Li+) and the formation of the LixCu3‐xP phase (0 ≤ × ≤ 2). In this case, when the potential is limited to 0.5 V, the capacity is stable for more than 50 cycles. Acceptable electrochemical performances in Li‐ion cells within the voltage range 0.50–2.0 V (vs. Li/Li+) were shown when Cu3P was used as an anode and Li1.2(Ni0.13Mn0.54Co0.13)O2 and LiNi0.5Mn1.5O4 as positive electrode materials.  相似文献   

19.
Cathode materials are usually active in the range of 2–4.3 V, but the decomposition of the electrolytic salt above 4 V versus Na+/Na is common. Arguably, the greatest concern is the formation of HF after the reaction of the salts with water molecules, which are present as an impurity in the electrolyte. This HF ceaselessly attacks the active materials and gradually causes the failure of the electrode via electric isolation of the active materials. In this study, a bioinspired β‐NaCaPO4 nanolayer is reported on a P2‐type layered Na2/3[Ni1/3Mn2/3]O2 cathode material. The coating layers successfully scavenge HF and H2O, and excellent capacity retention is achieved with the β‐NaCaPO4‐coated Na2/3[Ni1/3Mn2/3]O2 electrode. This retention is possible because a less acidic environment is produced in the Na cells during prolonged cycling. The intrinsic stability of the coating layer also assists in delaying the exothermic decomposition reaction of the desodiated electrodes. Formation and reaction mechanisms are suggested for the coating layers responsible for the excellent electrode performance. The suggested technology is promising for use with cathode materials in rechargeable sodium batteries to mitigate the effects of acidic conditions in Na cells.  相似文献   

20.
While Ni‐rich cathode materials combined with highly conductive and mechanically sinterable sulfide solid electrolytes are imperative for practical all‐solid‐state Li batteries (ASLBs), they suffer from poor performance. Moreover, the prevailing wisdom regarding the use of Li[Ni,Co,Mn]O2 in conventional liquid electrolyte cells, that is, increased capacity upon increased Ni content, at the expense of degraded cycling stability, has not been applied in ASLBs. In this work, the effect of overlooked but dominant electrochemo‐mechanical on the performance of Ni‐rich cathodes in ASLBs are elucidated by complementary analysis. While conventional Li[Ni0.80Co0.16Al0.04]O2 (NCA80) with randomly oriented grains is prone to severe particle disintegration even at the initial cycle, the radially oriented rod‐shaped grains in full‐concentration gradient Li[Ni0.75Co0.10Mn0.15]O2 (FCG75) accommodate volume changes, maintaining mechanical integrity. This accounts for their different performance in terms of reversible capacity (156 vs 196 mA h g?1), initial Coulombic efficiency (71.2 vs 84.9%), and capacity retention (46.9 vs 79.1% after 200 cycles) at 30 °C. The superior interfacial stability for FCG75/Li6PS5Cl to for NCA80/Li6PS5Cl is also probed. Finally, the reversible operation of FCG75/Li ASLBs is demonstrated. The excellent performance of FCG75 ranks at the highest level in the ASLB field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号