首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
150 cyclical Friesian heifers were subjected to surgery under general anaesthesia for the purpose of ovum collection. All had been inseminated with semen from the same ejaculate from a Hereford bull. 50 heifers were in oestrus after daily intramuscular injections of 2.4 mg SC9880 and 50 were in oestrus after similar treatment with 0.2 mg SC21009. The remainder were untreated controls. Equal numbers in each group were subjected to surgery on the third and fourth day after oestrus. An attempt was made to determine whether the collected ova were fertilised; what the cleavage stage was and whether or not gross abnormalities were present. 125 (83.3%) ova were collected. Of these 118 (94.4%) were fertilised. Steroid treatment had no significant effect on ovum collection rate or fertilisation rate or on the incidence of abnormal forms. Treatment significantly affected the cleavage stage of the early embryo. Treatment with both steroids was associated with early cleavage forms which were absent in the untreated animals. The implications of this finding in relation to fertility depression in heifers treated with SC9880 or SC21009 for 21 days is discussed.  相似文献   

2.
Two experiments are described in which the time relationships of oestrus and ovulation and fertility to artificial insemination in sexually mature Friesian heifers are compared with similar animals treated with PGF2a alone or in combination with SC21009. It is concluded that neither treatment adversely affects the parameters studied but that the combined treatment will lead to an enhanced oestrous response; and offers a practical method of oestrous synchronisation at farm level.  相似文献   

3.
A study was done to evaluate the effect of using progesterone (P4) intravaginal device (CIDR: controlled internal drug-releasing dispenser) to synchronise the return to oestrus of previously timed inseminated (TAI) dairy heifers, and to evaluate embryo survival and pregnancy rate (PR) in the return to oestrus heifers. At the onset of the artificial insemination (AI) breeding period (day -9), heifers were randomly assigned into two groups (treated group CGPG, n = 79) and (control group GPG, n = 83). Every heifer in both groups was injected with gonadotropin-releasing hormone (GnRH) agonist and prostaglandin F2-alpha (PGF2α) as follows: GnRH on day -9; PGF2α on day -2; GnRH and TAI on day 0. Heifers in both groups received TAI within 30 min after the second GnRH injection. Artificial insemination at first breeding was conducted for all heifers during 55 days from day 0. On day 14 after timed insemination, every heifer in the CGPG group received CIDR device for 6 days. Within 3 days after CIDR removal, more heifers in CGPG group showed oestrus within 1.9 days compared to heifers that showed oestrus within 2.9 days in the control. Within 10 days after CIDR removal, more heifers in the CGPG group showed oestrus within 2.4 days compared to heifers that showed oestrus within 6.7 days in the control. PRs on days 30 and 55 were not different between both groups, while PR on day 55 during September were higher (P = 0.032) in CGPG group (58.0%) than GPG group (37.0%). In addition, PR from first to second AI was higher (P = 0.037) for CGPG group (79.8%) than for GPG group (65.1%) but it was similar after that. Pregnancy losses between days 30 and 55 tended to be lower (P = 0.089) for the CGPG group (12.7%) compared to 25.1% for the GPG group. Interval between first and second AI was lower (P = 0.052) for the CGPG group (27.5 ± 1.6 days) compared to 31.6 ± 1.3 days for heifers in the GPG group but no differences were detected for intervals from second to third AI and from third to fourth AI between the two groups. Number of services per pregnancy was not different between CGPG and GPG groups. Results indicate that the CIDR device improved synchronisation to return to oestrus and increased PR to first AI during high temperature months by reducing embryonic losses.  相似文献   

4.
This study was conducted to determine the efficacy of feeding melengestrol acetate (MGA) for 14 days and administering prostaglandin F(2)alpha (PGF) 17 days after MGA to synchronize or induce estrus in yearling beef heifers. The study involved 56 Angus (n = 19), Hereford (n = 15) and Simmental (n = 22) heifers that were assigned by breed and pubertal status to either MGA+PGF or to control groups. Heifers in the synchronized group were fed 0.5 mg MGA per head per day for 14 days from a grain carrier and were injected with 25 mg, i.m. PGF 17 days after the last daily feeding of MGA. Control heifers were fed from a grain carrier without MGA and were not treated with PGF. Heifers were classified as pubertal when concentrations of progesterono in the serum exceeded 1 ng/ml in 1 of 2 samples collected prior to the initiation of treatments. Blood samples were collected 7 days before and on the day that treatment with MGA or carrier began and 7 days before and on the day that PGF was administered. Progesterone concentrations in the serum were elevated ( > 1 ng/ml) in 61% (17 28 ) of the MGA+PGF-treated heifers and in 61% (17 28 ) of the control heifers prior to feeding MGA. However, concentrations of progesterone in the serum at the time PGF was administered differed (P<0.05) between MGA+PGF and control groups. Concentrations of progesterone in the serum exceeded 1 ng/ml in 100% (28 28 ) of the MGA+PGF-treated heifers and in 71% (20 28 ) of control heifers at the time PGF was administered (P<0.05). All heifers were inseminated 12 hours after the first detected estrus. Twenty-two of 28 (79%) of the MGA+PGF-treated heifers exhibited estrus within 6 days after PGF compared with 9 of 28 (32%) of control heifers (P<0.05). The conception rate at first service did not differ between MGA+PGF and control groups (64% and 67%, respectively). Synchronized pregnancy rates were higher (P<0.05) for MGA+PGF-treated heifers than for control heifers (14 28 , 50% vs 6 28 , 21%). Increased concentrations of progesterone in serum at the time PGF was administered and higher pregnancy rates during the synchronized period among MGA+PGF-treated heifers demonstrate the efficacy of this treatment for use in estrus synchronization. Moreover, this treatment may have a potential effect on inducing puberty in breeding age heifers.  相似文献   

5.
Control of estrus in dairy heifers with Syncro-Mate-B was evaluated in five experiments with a total of 393 Holstein heifers. Estradiol-17β at implant removal or gonadotropin releasing hormone 40 hr after implant removal did not cause any beneficial effect on fertility. In heifers implanted on selected days of the estrous cycle, 88.3% of heifers treated with SMB only were in estrus within 5 days of implant removal and fertility was not significantly different from that of control heifers. In heifers implanted at random stages of the estrous cycle, estrus occurred within 5 days of implant removal in 88.7% of 159 SMB treated heifers. First service conception rates (heifers pregnant of heifers inseminated) and pregnancy rates (heifers pregnant of heifers assigned) were 72.7% and 60.8% for heifers inseminated 8 to 16 hr after estrus within 5 days of implant removal, 55.0% and 55.0% for heifers inseminated 48 hr after implant removal without regard to estrus and 71.6% and 67.1% for control heifers inseminated over a 25 day period.  相似文献   

6.
Fifty-four normally cycling, non-lactating mares were given 2 injections (i.m.) of PGF-2 alpha (10 mg) 14 days apart without regard to stage of the oestrous cycle. At 19 days after the first PGF-2 alpha treatment, a single i.m. injection of either hCG (3300 i.u.) or a GnRH-analogue (500 micrograms) was administered. Each mare was inseminated with 100 X 10(6) motile spermatozoa at one of the following frequencies: once only on Day 20; every other day during oestrus or at least on Days 19 and 21; or daily during oestrus or at least on Days 19, 20, 21 and 22. Eighteen control mares received saline injections on Days 0 and 14, and were inseminated either on the 4th day of oestrus or every other day or daily beginning on the 2nd day of oestrus. More (P greater than 0.05) PGF-2 alpha treated mares displayed their 1st day of oestrus on Days 14 to 20 than control mares (80.6 versus 27.8%). During cycle 1, fewer (P greater than 0.05) treated mares became pregnant compared to controls; 38.9, 25.0 and 66.7% for PGF-2 alpha + hCG, PGF-2 alpha + GnRH-A and control mares, respectively. After three cycles, the pregnancy rates for mares inseminated every other day or daily were higher (P less than 0.05) than mares inseminated only once during oestrus (88.9 and 88.2 versus 64.7%).  相似文献   

7.
Progestagen-impregnated pessaries were inserted into 205 heifers on eight farms. Treatments were either pessaries only for 20 days or pessaries for 10 days combined with an intramuscular injection of 250 mg progesterone+7-5 mg oestradiol benzoate on the day of insertion. Pessary retention was low (86.7%) over the 20-day period, but high (93-6%) during the 10-day period. Calving rates of heifers inseminated in oestrus following the 20-day treatment were low, while those of heifers inseminated on a fixed-time basis with the 10-day treatment were slightly higher than those of control heifers.  相似文献   

8.
The objective was to determine reproductive performance following AI in beef heifers given estradiol to synchronize ovarian follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose PGF-based protocol. In Experiment 1, 561 cycling (confirmed by ultrasonography), Angus heifers received 500 microg cloprostenol, i.m. (PGF) twice, 14 days apart (days 0 and 14) and were equally allocated to four groups in a 2 x 2 factorial design. On Day 7, heifers received either 2 mg estradiol benzoate (EB) and 50 mg progesterone (P), i.m. in oil (EBP group) or no treatment (NT group). Half the heifers in each group received 1mg EB, i.m. in oil on Day 15 (24h after the second PGF treatment) with TAI 28 h later (52 h after PGF), and the other half received 100 microg GnRH, i.m. on Day 17 (72 h after PGF) concurrent with TAI. All heifers were observed for estrus twice daily from days 13 to 17; those detected in estrus more than 16 h before scheduled TAI were inseminated 4-16 h later and considered nonpregnant to TAI. Overall pregnancy rate (approximately 35 days after AI) was higher in heifers that received EBP than those that did not (61.6% versus 48.2%, respectively; P < 0.002); but was lower in heifers that received EB after PGF than those that received GnRH (50.0% versus 59.8%; P < 0.02). Although estrus was detected prior to TAI in 77 of 279 heifers (27.6%) treated with EBP (presumably due to induced luteolysis), they were inseminated and 53.2% became pregnant. Overall pregnancy rates were 51.4, 68.3, 45.0, and 55.0% in the NT/GnRH, EBP/GnRH, NT/EB, and EBP/EB groups, respectively (P < 0.05). In Experiment 2, 401 cycling, Angus heifers were used. The design was identical to Experiment 1, except that 1.5mg estradiol-17beta (E-17beta) plus 50mg progesterone (E-17betaP) and 1mg E-17beta were used in lieu of EBP and EB, respectively. All heifers receiving E-17beta 24h after the second injection of PGF (NT/E-17beta and E-17betaP/E-17beta) were TAI 28 h later without estrus detection, i.e. 52 h after PGF. Heifers in the other two groups received 100 microg GnRH, i.m. 72 h after PGF and were concurrently TAI; heifers in these two groups that were detected in estrus prior to this time were inseminated 4-12h later and considered nonpregnant to TAI. Estrus rate during the first 72 h after the second PGF treatment was higher (P < 0.05) in the E-17betaP/GnRH group (45.0%; n = 100) than in the NT/GnRH group (16.0%; n = 100), but conception rate following estrus detection and AI was not different (mean, 57.4%; P = 0.50). Overall pregnancy rate was not significantly different among groups (mean, 46.9%; P = 0.32). In summary, the use of EB or E-17beta to synchronize follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose, PGF-based protocol resulted in acceptable fertility to TAI. However, when 2mg EB was used to synchronize follicular wave emergence, early estrus occurred in approximately 28% of heifers, necessitating additional estrus detection. A combination of estrus detection and timed-AI in a two-dose PGF protocol resulted in highly acceptable pregnancy rates.  相似文献   

9.
Spitzer JC 《Theriogenology》1982,17(4):373-381
A study was conducted to evaluate the effectiveness of treatment with Syncro-Mate-B (SMB) and gonadotropin releasing-hormone (GnRH) on inducing a fertile estrus and/or ovulation in peripuberal beef heifers. Two hundred and twenty-three, 13 to 15 month peripuberal beef heifers, primarily of Angus or Simmental breeding, were alternately allotted by weight and age within breed to a non-treated control group (C) and three groups which received the SMB treatment regime. Treated groups differed in that one group was inseminated approximately 12 hr after detected in estrus (T) while two other groups were inseminated at a fixed time after implant removal (T-G-I42, T-I48). Heifers in group T-G-I42 received 125 mug GnRH at 30 hr, and were inseminated 42 hr after implant removal. The remaining group of SMB-treated heifers received no additional hormone therapy but were inseminated 48 hr after implant removal (T-I48). Age had no significant effect on estrous response or pregnancy rate nor were there significant age by weight interactions on these parameters. Weight was a significant source of variation on interval from start of breeding to pregnancy (P<.01) and the effect on interval to estrus approached statistical significance (P<.0.9). In control heifers, increased weight had a positive effect on estrous response during the first 21 days of breeding (P<.05). Conversely, weight had no effect on estrous response during the 5-day synchronized period in heifers treated with SMB and observed for estrus (group T). Cumulative estrous response in control heifers was 10, 47, 48 and 55% in 5, 21, 27 and 45 days of breeding, respectively. Cumulative estrous response in SMB-treated heifers obsrved for estrus (group T) was 88, 91, 91 and 91% in 5, 21, 27 and 45 days of breeding, respectively. Pregnancy rate after 5 days of breeding was 9, 27, 18 and 30% for heifers in groups C, T, T-G-I42 and T-I48, respectively. Pregnancy rate after 21 days of breeding for heirfers in groups C, T, T-G-I42 and T-I48, respectively, was 33, 38, 21 and 41%; after 27 days of breeding was 36, 43, 40 and 48%; after 45 days of breeding was 48, 61, 51 and 69% and after the total 88-day breeding season was 59, 68, 71 and 72%. While a large percentage of peripuberal beef heifers with adequate age but insufficient weight were induced into estrus with the SMB treatment, pregnancy rates were low. Timed insemination programs with or without GnRH do not appear to be effective in improving pregnancy response in non-cyclic beef heifers.  相似文献   

10.
The objective of Experiment I, replicated twice, was to evaluate whether fertility of estrus-synchronized dairy heifers could be improved by postinsemination progesterone supplementation. Estrous cycles were synchronized using two injections of prostaglandin (PG) F(2alpha) adiministered 11 days apart. Heifers displaying estrus were inseminated and assigned to control (n = 155) and treated (n = 159) groups. Treatment consisted of intravaginal insertion of controlled internal drug release (CIDR) devices for Days 7 to 13 (Day 0 = day of estrus). The conception rate for CIDR-treated heifers (57.9%) did not differ significantly from that of the controls (53.6%). The return-to-estrus rate and pattern of return estruses were not affected by treatment, but indicated that early embryonic mortality may have occurred in some of the heifers diagnosed nonpregnant. The objective of Experiment II was to evaluate if used CIDR devices were effective in resynchronizing returns to estrus in previously synchronized inseminated but nonpregnant and noninseminated heifers. Estrous cycles of dairy heifers of breeding age were synchronized with PGF(2alpha). Heifers displaying estrus were assigned to be inseminated (n = 117) or not inseminated (n = 35). All heifers were treated with 9-day used CIDR devices for Days 17 to 22 after synchronized estrus in order to resynchronize returns to estrus. Of the inseminated but nonpregnant heifers (n = 41), 78.1% were detected in estrus after CIDR removal (versus 94.3% of noninseminated heifers [n = 35]; P < 0.05) and 61.0% of the estruses occurred within 4 days of CIDR removal (versus 91.4% of noninseminated; P < 0.05). Estruses of synchronized inseminated nonpregnant heifers occurred over a longer period compared with those of noninseminated heifers (P < 0.025). The results indicate that response to the resynchronization protocol was altered by the outcome (early embryo death or failed fertilization) of the previous unsuccessful insemination, and support the hypothesis that delayed returns to estrus can be attributable to a pregnancy which was initiated but failed to establish itself. Such factors should be considered when evaluating responses of cattle to treatments designed to enhance fertility.  相似文献   

11.
Ultrasonography was used to monitor the growth, ovulation and regression of individual ovarian follicles greater than or equal to 5 mm during the late luteal and follicular phases of the oestrous cycle in heifers treated with injections of PGF-2 alpha to induce luteolysis and in heifers undergoing spontaneous luteolysis. Six heifers were given a single injection of PGF-2 alpha between Day 12 and 15 of the oestrous cycle and their ovaries were examined daily by transrectal ultrasonography until ovulation occurred. Another group of 5 heifers was examined daily by ultrasound from Day 14 or 15 of the cycle through spontaneous luteolysis and ovulation. Blood samples were taken twice daily from this group and analysed for progesterone to determine when luteolysis occurred. All heifers were checked for oestrous behaviour twice daily. Mean diameters of ovulatory follicles on each of the 3 days before oestrus were not different between PGF-2 alpha-treated and untreated heifers. In both groups there was large variation among heifers in the sizes and growth rates of the ovulatory follicles. At 3 days before oestrus the diameters of ovulatory follicles were between 7.5 and 11 mm in PGF-2 alpha-treated heifers and between 6 and 11.5 mm in untreated heifers. Non-ovulatory follicles decreased in size during the 3 days before oestrus and the number of non-ovulatory follicles within the size ranges of ovulatory follicles decreased. The ovulatory follicle was not consistently the largest follicle on the ovaries until the day of oestrus but was always one of the 2 largest follicles during the 3 days before oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Four trials were conducted to study synchronous estrous response in beef cows and in beef and dairy heifers to Luprostiol (13, thia-PG-F(2)alpha analog) in comparison with other prostaglandin products. In Trial 1, 60 virgin beef heifers were observed for estrus for 5 d and artificially inseminated. Heifers not observed in estrus within 5 d were randomly assigned to receive 15 mg Luprostiol or 25 mg Lutalyse. In Trial 2, 75 multiparous, lactating beef cows were randomly assigned to receive either 15 mg Luprostiol, 25 mg Lutalyse or 500 mcg Estrumate. All cows received a second injection of the respective treatment 11 d later. In Trial 3, 96 multiparous, lactating beef cows were randomly assigned to receive 15 mg Luprostiol or 25 mg Lutalyse. All cows received a second injection of the respective treatment 11 d later. In Trial 4, virgin dairy heifers were palpated per rectum. Seventy-seven heifers with a palpable corpus luteum (CL) were randomly assigned to receive 15 mg Luprostiol or 500 mcg Estrumate. In all trials animals were artificially inseminated 12 h following observed estrus. Estrous response during the 5-d synchronized period was 44% for Luprostiol and 42% for Lutalyse treated heifers in Trial 1. It was 52, 56 and 60%, respectively, for Luprostiol, Lutalyse and Estrumate treated cows in Trial 2; 23% for Luprostiol and 19% for Lutalyse treated cows in Trial 3; and 68% for Luprostiol and 70% for Estrumate treated heifers in Trial 4. Treatment with Luprostiol results in a similar synchronous estrous response as with the other prostaglandin products used in these studies.  相似文献   

13.
Puberty was studied using 15 fillies of Quarter Horse phenotype. Fillies were from dams treated daily from Days 20 to 325 of gestation with: (1) 2 ml neobee oil per 50 kg body weight (controls); or (2) 2 ml altrenogest (2.2 mg/ml) per 50 kg body weight. The clitoris was measured at birth and approximately every 12 weeks until 84 weeks of age. Blood samples were collected from 9 fillies (5 treated, 4 controls) every 4 days over a 28-day period at 8-week intervals from 4 to 68 weeks of age; sampling continued every 4 days after 72 weeks of age until first oestrus. Blood samples were collected daily during oestrus (greater than or equal to 35 mm follicle) and on Days 4, 6, 10, and 14 after ovulation for the first 2 oestrous cycles. GnRH challenges (5 micrograms/kg) were administered every 8 weeks from 32 to 96 weeks of age. Puberty was defined as the first oestrus with ovulation. Beginning 1 February 1987, fillies were teased daily and their ovaries were examined by ultrasonography every 3 days (daily during oestrus). Fillies were inseminated with 500 x 10(6) motile spermatozoa from one stallion. Pregnancy was diagnosed by ultrasonography on Days 11, 12, 15 and every 5 days until Day 50 after ovulation. Prenatal altrenogest treatment caused clitoral enlargement (P less than 0.05) and increased serum concentrations of LH from 1 to 7 months of age. The amount of LH released in response to exogenous GnRH was greater (P less than 0.05) in treated fillies at 32, 64, and 72 weeks of age. Treated fillies had higher serum concentrations of FSH from 1 to 4 months (P less than 0.05), but FSH was lower (P less than 0.05) in treated fillies before and during first oestrus. Serum concentrations of LH and FSH peaked transiently at 10 months and LH was depressed from 64 to 88 weeks and began to rise 14 days before first oestrus. Concentrations of FSH began to decline 14 days before first oestrus. The median age at puberty was 90 weeks. Durations of oestrus, dioestrus, and the oestrous cycle were not different between groups and were similar to those for adult mares. First cycle pregnancy rates and overall rates were 100 and 82% and 100 and 91.7% for control and treated fillies, respectively (P greater than 0.05). Maternal treatment with altrenogest did alter gonadotrophin secretion before puberty, but had no effect on functional reproductive performance in fillies.  相似文献   

14.
Prostaglandin was used to induce estrus in 129 Hereford x Holstein heifers for artificial insemination. At the start of the breeding season heifers were observed twice daily and inseminated 12 hours after first being observed in estrus. On the morning of the sixth day of the breeding season all heifers not yet observed in estrus or inseminated were treated with prostaglandin (25 mg Lutalyse(R)). Observation was continued and heifers were bred 12 hours after first observed in estrus. Of the 129 heifers 33 were inseminated before prostaglandin treatment, the remainder of the heifers were bred within 4 days of treatment. Two heifers developed cysts and did not express estrus. First service pregnancy rates were 70% before treatment and 79% after treatment. All heifers were inseminated the first time within the first 10 days of the breeding season and 100 pregnancies occurred in the first 10 days of the season. As a result median days to pregnancy was 8. Calves were all weaned and weighed at approximately 150 days of age. These results were then used to model the economic impact of estrus synchronization of beef heifers on the increased weaning weights of their calves. Prostaglandin treatment altered the distribution of pregnancies and resulted in a cluster of conceptions from Day 7 to 10 of the breeding season with no conceptions from Day 11 to 19. In order to study the influence of estrus synchronization on weaning weights a simulation model was constructed. All heifers that conceived on the first service after prostaglandin were assigned an alternate date of conception from Day 7 to 21 of the breeding season with a random number generator. In this way a uniform random distribution of pregnancies over the first 21 days of the breeding season was constructed. An alternate calving date was then estimated using the known gestation length and this date was used to calculate the weaning weight of the calf using the known weight per day of age. The average weaning weight of the uniform random distribution was then compared to the synchronized distribution with Student's t -test. The simulation model was repeated 10 times and each time weaning weights of the uniform random distribution were significantly less than with the synchronization program (p<.01). At a value of $4.00 for prostaglandin and $1.76 for each kilogram of calf the average increase of 3.8 kgs in weaning weight per calf resulted in a return on investment of $1.92 for every dollar invested in prostaglandin.  相似文献   

15.
The aims of this study were to determine: (1) if short-term treatment of Bos indicus heifers with progesterone (P4) while implanted with a s.c. norgestomet implant for 17 days would influence the time interval to oestrus and increase fertility of the synchronised oestrus, and (2) whether the response to treatment with P4 would differ between heifers treated with a norgestomet implant for 17 vs. 11 days when short-term treatment with P4 is applied 3 days prior to implant removal. B. indicus heifers at two separate sites (A and B) were allocated to three groups at each site. Heifers in two groups (NG and NGP4 groups) were given a single s.c. norgestomet implant on the first day of treatment (day 0) while heifers in a third group (NGP4PG group) were implanted on day 6. A single P4 releasing Controlled Internal Drug Release device (CIDR) was inserted on day 14 in heifers in the NGP4 and NGP4PG groups and was removed 23.5±0.07 h later (day 15). Heifers in the NGP4PG group were administered an analogue of prostaglandin F2α (PGF2α) at the time of CIDR removal to regress corpora lutea. Implants were removed from all heifers on the same day (day 17) and a 400 IU of equine chorionic gonadotrophin (ECG) was administered s.c. Animals were artificially inseminated 11.1±0.17 h after detection of oestrus, using frozen semen from one bull at site A and one of five bulls at site B. Inseminations were carried out by one of two technicians. Treatment with P4 delayed oestrus and reduced the synchrony of oestrus at site A (hours to oestrus±SD: NG group, 39.0±13.7; NGP4 group, 66.3±24.4; NGP4PG group, 58.9±20.5 h; P<0.05) but not at site B (41.4±15.2, 42.5±10.1, 45.4±10.3 h; P>0.05). Pregnancy rates 6 weeks after insemination were found to be significantly associated with bull (P<0.001), treatment group (P=0.013) and insemination technician (P=0.033). Pregnancy rates were greater in the heifers in the NGP4 group than heifers in the NG group [50.3% (78/155) vs. 36.4% (60/165); odds ratio=1.83, 95% CI=1.14 to 2.96] and similar between heifers in the NGP4 and NGP4PG groups [50.3% (78/155) vs. 51.1% (63/117); odds ratio=1.06, 95% CI=0.67 to 1.69]. It was concluded that acute treatment with P4 can improve pregnancy rates in B. indicus heifers treated for 17 days with norgestomet implants. Reducing the duration of norgestomet treatment to 11 days and administration of PGF2α at the time of ending treatment with a CIDR device resulted in no differences in fertility, mean intervals to oestrus or synchrony of oestrus.  相似文献   

16.
Two experiments were conducted to compare pregnancy rates when GnRH or estradiol were given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based estrus synchronization program. Crossbred beef cattle were fed melengestrol acetate (MGA, 0.5 mg per day) for 7 days (designated days 0-6, without regard to stage of the estrous cycle) and given cloprostenol (PGF; 500 microg intramuscular (im)) on day 7. In Experiment 1, lactating beef cows (n=140) and pubertal heifers (n=40) were randomly allocated to three groups to receive 100 microg gonadorelin (GnRH), 5 mg estradiol-17beta and 100 mg progesterone (E+P) in canola oil or no treatment (control) on day 0. All cattle were observed for estrus every 12 h from 36 to 96 h after PGF. Cattle in the GnRH group that were detected in estrus 36 or 48 h after PGF were inseminated 12 h later; the remainder were given 100 microg GnRH im 72 h after PGF and concurrently inseminated. Cattle in the E+P group were randomly assigned to receive either 0.5 or 1.0 mg estradiol benzoate (EB) in 2 ml canola oil im 24 h after PGF and were inseminated 30 h later. Cattle in the control group were inseminated 12 h after the first detection of estrus; if not in estrus by 72 h after PGF, they were given 100 microg GnRH im and concurrently inseminated. In the absence of significant differences, all data for heifers and for cows were combined and the 0.5 and 1.0 mg EB groups were combined into a single estradiol group. Estrus rates were 57.6, 57.4 and 60.0% for the GnRH, E+P and control groups, respectively (P=0.95). The mean (+/-S.D.) interval from PGF treatment to estrus was shorter (P<0.001) and less variable (P<0.001) in the E+P group (49.0+/-6.1 h) than in either the GnRH (64.2+/-15.9 h) or control (66.3+/-13.3 h) groups. Overall pregnancy rates were higher (P<0.005) in the GnRH (57.6%) and E+P (55.7%) groups than in the control group (30.0%) as were pregnancy rates to fixed-time AI (47.5, 55.7 and 28.3%, respectively). In Experiment 2, 122 crossbred beef heifers were given either 100 microg GnRH or 2 mg EB and 50 mg progesterone in oil on day 0 and subsequently received either 100 microg GnRH 36 h after PGF and inseminated 14 h later or 1 mg EB im 24 h after PGF and inseminated 28 h later in a 2 x 2 factorial design. Pregnancy rates were not significantly different among groups (41.9, 32.2, 33.3 and 36.7% in GnRH/GnRH, GnRH/EB, EB/GnRH and EB/EB groups, respectively). In conclusion, GnRH or estradiol given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based synchronization regimen resulted in acceptable pregnancy rates to fixed-time insemination.  相似文献   

17.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

18.
In a 5-year study (1973-1977), 281 cycling beef heifers were treated with a 7-day norgestomet (SC21009) ear implant and an intramuscular injection of prostaglandin F(2alpha) (PGF(2alpha)) at the time of implant removal or 24 hr before implant removal. Percentages of heifers in estrus by 36, 48, 60, 72, and 120 hr after implant removal were 32.4, 52.7, 71.6, 80.1, and 93.2, respectively. Onset of estrus occurred an average of 49.8 +/- 4.7 hr after treatment. Percentages of heifers in estrus 36 hr after treatment were 5.7 and 51.7 for those with a corpus luteum and those without a corpus luteum (or determined regressing by palpation) at implant removal, respectively. When PGF(2alpha) was injected 24 hr before implant removal, 55% of the heifers were in estrus by 36 hr after implant removal compared to 30% when PGF(2alpha) was injected at the time of implant removal; however, by 60 hr after implant removal the difference was 76% vs. 71%. First-service conception rates for synchronized and nonsynchronized heifers were 62.2% and 59.6%, respectively. During 1976 and 1977 heifers were checked for estrus every 4 hr and inseminated 2, 6, 10, 14, 18, 22, 26, or 30 hr after first detected to be in standing estrus. Conception rate was not significantly affected by time of insemination but tended to be higher for heifers bred 26 and 30 hr after first being detected in standing estrus (78.9% and 70.0% vs. average 59.2%). Treatment with a 7-day norgestomet implant plus a single injection of PGF(2alpha) 24 hr before or at implant removal appears to be a practical technique for synchronizing estrus in cycling heifers without affecting conception.  相似文献   

19.
Luteolysis was induced by an injection of 500 micrograms cloprostenol (a prostaglandin (PG) analogue) in pregnant (P) Holstein heifers on Days 17 or 24 of gestation and in non-pregnant (NP) Holstein heifers on Day 17 of the oestrous cycle (oestrus = Day 0). Heifers in Groups P-17 (N = 8) and P-24 (N = 8) were inseminated twice whereas those in Group NP-17 (N = 8) were not inseminated. Immediately after PG injection, embryos were recovered by uterine flushing (400 ml) to confirm pregnancy in Groups P-17 and P-24. Uterine flushing with an equivalent volume of physiological saline was also done in Group NP-17. The interval from PG injection to oestrus and to the peak of luteinizing hormone (LH) as well as profile of increase in plasma oestradiol concentrations during that period did not differ (P greater than 0.1) among the groups. However, the proportion of heifers exhibiting abnormal luteal phases (primarily of short duration) during the oestrous cycle after PG injection was greater (P less than 0.01) in Group P-24 than in Groups NP-17 + P-17 pooled (6/8 vs 3/16). These results suggest that the previous presence of a conceptus did not have any effect on the onset of oestrus, or on plasma concentrations of oestradiol and LH after PG-induced luteolysis on Days 17 or 24 of gestation. However, luteal function during the subsequent oestrous cycle was impaired if heifers were 24 days pregnant when luteolysis was induced.  相似文献   

20.
This study investigated the effects of feeding the orally active progestagen, altrenogest (Regumate) post-weaning on the subsequent reproductive performance of early weaned sows. Ninety (90) Large White/Landrace first parity sows were randomly assigned to three treatments. Treatment 1 (EW) and treatment 3 (CW) sows were weaned on day 12 and day 24 post-partum, respectively while treatment 2 sows (EW-R) were weaned on day 12 post-partum and received an individual daily dose of 20 mg of Regumate on days 13 to 24 post-partum inclusive. Each sow was mated naturally at least twice at the first post-weaning or post-treatment oestrus and slaughtered on days 25–28 of pregnancy to determine the number of corpora lutea and embryos. Regumate-to-oestrus and weaning-to-oestrus intervals were similar for EW-R and CW sows (6.2 vs. 5.6 days). However, both intervals were significantly shorter (P<0.01) than the weaning-to-oestrus interval of EW sows (7.3 days). An excellent synchronization of oestrus was achieved with Regumate treatment with 97% of treated sows in oestrus within 7 days of Regumate withdrawal compared with 64% for EW sows (P<0.01) and 87% for CW sows (P>0.05). Treatment with Regumate resulted in a significant increase in ovulation rate (16.9 vs. 15.4 and 14.9 for treatments EW-R, EW and CW, respectively; P<0.05) and a non-significant increase in early embryonic survival (77% vs. 68% vs. 68% for treatments EW-R, EW and CW, respectively; P>0.05). These results indicate that Regumate feeding is a potential management tool to alleviate the diminished reproductive performance associated with early weaning regimes since it leads to successful control of oestrus, higher ovulation and embryo survival rates and thus a greater potential litter size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号