首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono‐ and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl‐MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl‐MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12‐oxo‐phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA‐containing galactolipids in the plant kingdom. While acyl‐MGDG was found to be ubiquitous in green tissue of plants ranging from non‐vascular plants to angiosperms, OPDA‐containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non‐oxidized and OPDA‐containing acyl‐MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl‐MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.  相似文献   

2.
Formation of galactose‐acylated monogalactosyldiacylglycerols has been shown to be induced by leaf homogenization, mechanical wounding, avirulent bacterial infection and thawing after snap‐freezing. Here, lipidomic analysis using mass spectrometry showed that galactose‐acylated monogalactosyldiacylglycerols, formed in wheat (Triticum aestivum) and tomato (Solanum lycopersicum) leaves upon wounding, have acyl‐galactose profiles that differ from those of wounded Arabidopsis thaliana, indicating that different plant species accumulate different acyl‐galactose components in response to the same stress. Additionally, the composition of the acyl‐galactose component of Arabidopsis acMGDG (galactose‐acylated monogalactosyldiacylglycerol) depends on the stress treatment. After sub‐lethal freezing treatment, acMGDG contained mainly non‐oxidized fatty acids esterified to galactose, whereas mostly oxidized fatty acids accumulated on galactose after wounding or bacterial infection. Compositional data are consistent with acMGDG being formed in vivo by transacylation with fatty acids from digalactosyldiacylglycerols. Oxophytodienoic acid, an oxidized fatty acid, was more concentrated on the galactosyl ring of acylated monogalactosyldiacylglycerols than in galactolipids in general. Also, oxidized fatty acid‐containing acylated monogalactosyldiacylglycerols increased cumulatively when wounded Arabidopsis leaves were wounded again. These findings suggest that, in Arabidopsis, the pool of galactose‐acylated monogalactosyldiacylglycerols may serve to sequester oxidized fatty acids during stress responses.  相似文献   

3.
Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate‐resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization‐tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat‐tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3‐containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd‐numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0‐acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0‐ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT.  相似文献   

4.
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C. reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed.  相似文献   

5.
6.
Identifying lipids that experience coordinated metabolism during heat stress would provide information regarding lipid dynamics under stress conditions and assist in developing heat‐tolerant wheat varieties. We hypothesized that co‐occurring lipids, which are up‐regulated or down‐regulated together through time during heat stress, represent groups that can be explained by coordinated metabolism. Wheat plants (Triticum aestivum L.) were subjected to 12 days of high day and/or night temperature stress, followed by a 4‐day recovery period. Leaves were sampled at four time points, and 165 lipids were measured by electrospray ionization‐tandem mass spectrometry. Correlation analysis of lipid levels in 160 leaf samples from each of two wheat genotypes revealed 13 groups of lipids. Lipids within each group co‐occurred through the high day and night temperature stress treatments. The lipid groups can be broadly classified as groups containing extraplastidic phospholipids, plastidic glycerolipids, oxidized glycerolipids, triacylglycerols, acylated sterol glycosides and sterol glycosides. Current knowledge of lipid metabolism suggests that the lipids in each group co‐occur because they are regulated by the same enzyme(s). The results suggest that increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes lead to simultaneous changes in levels of multiple lipid species during high day and night temperature stress in wheat.  相似文献   

7.
Lipid A anchors the lipopolysaccharide (LPS) to the outer membrane and is usually composed of a hexa‐acylated diglucosamine backbone. Burkholderia cenocepacia, an opportunistic pathogen, produces a mixture of tetra‐ and penta‐acylated lipid A. “Late” acyltransferases add secondary acyl chains to lipid A after the incorporation of four primary acyl chains to the diglucosamine backbone. Here, we report that B. cenocepacia has only one late acyltransferase, LpxL (BCAL0508), which adds a myristoyl chain to the 2′ position of lipid A resulting in penta‐acylated lipid A. We also identified PagL (BCAL0788), which acts as an outer membrane lipase by removing the primary β ‐hydroxymyristate (3‐OH‐C14:0) chain at the 3 position, leading to tetra‐acylated lipid A. Unlike PagL, LpxL depletion caused reduced cell growth and defects in cell morphology, both of which were suppressed by overexpressing the LPS flippase MsbA (BCAL2408), suggesting that lipid A molecules lacking the fifth acyl chain contributed by LpxL are not good substrates for the flippase. We also show that intracellular B. cenocepacia within macrophages produced more penta‐acylated lipid A, suggesting lipid A penta‐acylation in B. cenocepacia is required not only for bacterial growth and morphology but also for adaptation to intracellular lifestyle.  相似文献   

8.
9.
Under nutrient deplete conditions, diatoms accumulate between 15% to 25% of their dry weight as lipids, primarily as triacylglycerols (TAGs). As in most eukaryotes, these organisms produce TAGs via the acyl‐CoA dependent Kennedy pathway. The last step in this pathway is catalyzed by diacylglycerol acyltransferase (DGAT) that acylates diacylglycerol (DAG) to produce TAG. To test our hypothesis that DGAT plays a major role in controlling the flux of carbon towards lipids, we overexpressed a specific type II DGAT gene, DGAT2D, in the model diatom Phaeodactylum tricornutum. The transformants had 50‐ to 100‐fold higher DGAT2D mRNA levels and the abundance of the enzyme increased 30‐ to 50‐fold. More important, these cells had a 2‐fold higher total lipid content and incorporated carbon into lipids more efficiently than the wild type (WT) while growing only 15% slower at light saturation. Based on a flux analysis using 13C as a tracer, we found that the increase in lipids was achieved via increased fluxes through pyruvate and acetyl‐CoA. Our results reveal overexpression of DAGT2D increases the flux of photosynthetically fixed carbon towards lipids, and leads to a higher lipid content than exponentially grown WT cells.  相似文献   

10.
Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl‐CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl‐CoA pool through branched‐chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG‐rich D. tertiolecta mutant from targeted screening. Herein, a three‐step α loop‐integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl‐CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market.  相似文献   

11.
Murphy DJ 《Protoplasma》2006,228(1-3):31-39
Summary. I have used cellular and molecular genetic and bioinformatic approaches to characterise the components of the pollen coat in plants of the family Brassicaceae, including Arabidopsis thaliana and several brassicas including Brassica napus, B. oleracea, and B. rapa. The pollen coat in these species is mostly made up of a unique mixture of lipids that is highly enriched in acylated compounds, such as sterol esters and phospholipids. These acyl lipids are characterised by an unusually high degree of saturation. The fatty acids typically contain 70–90% saturated acyl residues such as myristate, palmitate, and stearate. The major sterol components of the pollen coat are saturated fatty acyl esters of stigmasterol, campesterol, and campestdienol. In addition to lipids, the second major component of the pollen coat is a specific group of proteins that is dominated by a family of proteins that we term pollenins. Although pollenins are by far the major protein components of the pollen coat of members of the Brassicaceae, proteomic analysis reveals that there are several additional protein components, including lipases, protein kinases, a pectin esterase, and a caleosin. The biosynthesis of these lipids and proteins and their significance for overall pollen function are reviewed and discussed. Correspondence and reprints: Biotechnology Unit, School of Applied Sciences, University of Glamorgan, Pontypridd CF37 1DL, Wales, United Kingdom.  相似文献   

12.
The diatom Conticribra weissflogii is a microalga with high nutrition value, rich in docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA). In order to study the effect of culture conditions on the changes of lipid compositions, the intact lipid structural profiles and fatty acids in C. weissflogii were monitored under static and aerated culture conditions. The results showed that, lipids identified in C. weissflogii were neutral lipid triacylglycerols (TAG), betaine lipid diacylglycerylcarboxy‐N‐hydroxymethyl‐choline (DGCC), phosphatidylcholine (PC) and four classes of photosynthetic glycerolipids. The profiles of lipid metabolites of C. weissflogii were different between two culture modes, with the following characteristics under aerated conditions: TAGs increased significantly, whereas the levels of sulfoquinovosyl diacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG), and DGCC decreased. Furthermore, higher contents of EPA‐rich TAG and EPA/DHA‐rich DGCC were detected at the end of stationary phase, while EPA/DHA‐rich PC, EPA‐rich MGDG and EPA‐rich digalactosyldiacylglycerol (DGDG) were obtained in the exponential phase under static conditions. Meanwhile, the contents of almost all classes of the essential fatty acids (EFAs)‐enriched lipids increased at onset of stationary phase under aerated conditions. Taken together, given that the high levels of EFAs are required for artificial rearing of marine organisms, aeration is critically important for increasing the production rate and the contents of EFA molecules and therefore increasing the nutritional value of the microalgae.  相似文献   

13.
Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers.  相似文献   

14.
Acholeplasma laidlawii was grown with different fatty acids for membrane lipid synthesis (saturated straight- and branched-chain acids and mono- and di-unsaturated acids). The ability of 12 different sterols to affect cell growth, lipid head group composition, the order parameter of the acyl chains, and the phase equilibria of in vivo lipid mixtures was studied. The following two effects were observed with respect to cell growth: with a given acyl chain composition of the membrane lipids, growth was stimulated, unaffected, reduced, or completely inhibited (lysis), depending on the sterol structure; and the effect of a certain sterol depended on the acyl chain composition (most striking for epicoprostanol, cholest-4-en-3-one, and cholest-5-en-3-one, which stimulated growth with saturated acyl chains but caused lysis with unsaturated chains). The three lytic sterols were the only sterols that caused a marked decrease in the ratio between the major lipids monoglucosyldiglyceride and diglucosyldiglyceride and hence a decrease in bilayer stability when the membranes were enriched in saturated (palmitoyl) chains. With these chains correlations were found for several sterols between the glucolipid ratio and the order parameter of the acyl chains, as well as the lamellar-reversed hexagonal phase transition, in model systems. A shaft experiment revealed a marked decrease in the ratio of monoglucosyldiglyceride to diglucosyldiglyceride with the lytic sterols in unsaturated (oleoyl) membranes. The two cholestenes induced nonlamellar phases in in vivo mixtures of oleoyl A. laidlawii lipids. The order parameters of the oleoyl chains were almost unaffected by the sterols. Generally, the observed effects cannot be explained by an influence of the sterols on the gel-to-liquid crystalline phase transition.  相似文献   

15.
16.
17.
18.
19.
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl‐constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER‐to‐chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号