首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trans‐Golgi network (TGN) is a major site for sorting of cargo to either the vacuole or apoplast. The TGN‐localized coiled‐coil protein TNO1 is a putative tethering factor that interacts with the TGN t‐SNARE SYP41 and is required for correct localization of the SYP61 t‐SNARE. An Arabidopsis thaliana tno1 mutant is hypersensitive to salt stress and partially mislocalizes vacuolar proteins to the apoplast, indicating a role in vacuolar trafficking. Here, we show that overexpression of SYP41 or SYP61 significantly increases SYP41–SYP61 complex formation in a tno1 mutant, and rescues the salt sensitivity and defective vacuolar trafficking of the tno1 mutant. The TGN is disrupted and vesicle budding from Golgi cisternae is reduced in the tno1 mutant, and these defects are also rescued by overexpression of SYP41 or SYP61. Our results suggest that the trafficking and Golgi morphology defects caused by loss of TNO1 can be rescued by increasing SYP41–SYP61 t‐SNARE complex formation, implicating TNO1 as a tethering factor mediating efficient vesicle fusion at the TGN.  相似文献   

2.
Legionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high‐throughput RNAi screens against host membrane trafficking genes to identify factors that antagonise vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilise the replication vacuole, EEA1 and Rab11FIP1 showed increased density about the sdhA mutant vacuole compared with the wild type (WT) vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant redistribution. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilise vacuole integrity during infection.  相似文献   

3.
Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P‐type H+‐ATPases in the plasma membrane, and multimeric vacuolar‐type H+‐ATPases (V‐ATPases) and vacuolar H+‐pyrophosphatases (H+‐PPases) in endomembranes. Here, we show that reduced accumulation of proanthocyanidins (PAs) and hence the diminished brown seed coloration found in the Arabidopsis thaliana mutant transparent testa 13 (tt13) is caused by disruption of the gene encoding the P3A‐ATPase AHA10. Identification of the gene encoded by the tt13 locus completes the molecular characterization of the classical set of transparent testa mutants. Cells of the tt13 seed coat endothelium do not contain PA‐filled central vacuoles as observed in the wild‐type. tt13 phenocopies tt12, a mutant that is defective in vacuolar import of the PA precursor epicatechin. Our data show that vacuolar loading with PA precursors depends on TT13. Consistent with the tt13 phenotype, but in contrast to other isoforms of P‐type H+‐ATPases, TT13 localizes to the tonoplast. PA accumulation in tt13 is partially restored by expression of the tonoplast localized H+‐PPase VHP1. Our findings indicate that the P3A‐ATPase TT13 functions as a proton pump in the tonoplast of seed coat endothelium cells, and generates the driving force for TT12‐mediated transport of PA precursors to the vacuole.  相似文献   

4.
Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild‐type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude‐weighted mean fluorescence lifetime (τm) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τm than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells.  相似文献   

5.
Sugarcane is an ideal candidate for biofarming applications because of its large biomass, rapid growth rate, efficient carbon fixation pathway and a well‐developed storage tissue system. Vacuoles occupy a large proportion of the storage parenchyma cells in the sugarcane stem, and the stored products can be harvested as juice by crushing the cane. Hence, for the production of any high‐value protein, it could be targeted to the lytic vacuoles so as to extract and purify the protein of interest from the juice. There is no consensus vacuolar‐targeting sequence so far to target any heterologous proteins to sugarcane vacuole. Hence, in this study, we identified an N‐terminal 78‐bp‐long putative vacuolar‐targeting sequence from the N‐terminal domain of unknown function (DUF) in Triticum aestivum 6‐SFT (sucrose: fructan 6‐fructosyl transferase). In this study, we have generated sugarcane transgenics with gene coding for the green fluorescent protein (GFP) fused with the vacuolar‐targeting determinants at the N‐terminal driven by a strong constitutive promoter (Port ubi882) and demonstrated the targeting of GFP to the vacuoles. In addition, we have also generated transgenics with His‐tagged β‐glucuronidase (GUS) and aprotinin targeted to the lytic vacuole, and these two proteins were isolated and purified from the transgenic sugarcane and compared with commercially available protein samples. Our studies have demonstrated that the novel vacuolar‐targeting determinant could localize recombinant proteins (r‐proteins) to the vacuole in high concentrations and such targeted r‐proteins can be purified from the juice with a few simple steps.  相似文献   

6.
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain‐containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine‐ and histidine‐rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre‐vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 – a member of the SNARE vesicle‐associated protein family and previously related to a sterol‐binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.  相似文献   

7.
During autophagy, the transmembrane protein Atg27 facilitates transport of the major autophagy membrane protein Atg9 to the preautophagosomal structure (PAS). To better understand the function of Atg27 and its relationship with Atg9, Atg27 trafficking and localization were examined. Atg27 localized to endosomes and the vacuolar membrane, in addition to previously described PAS, Golgi and Atg9‐positive structures. Atg27 vacuolar membrane localization was dependent on the adaptor AP‐3, which mediates direct transport from the trans‐Golgi to the vacuole. The four C‐terminal amino acids (YSAV) of Atg27 comprise a tyrosine sorting motif. Mutation of the YSAV abrogated Atg27 transport to the vacuolar membrane and affected its distribution in TGN/endosomal compartments, while PAS localization was normal. Also, in atg27(ΔYSAV) or AP‐3 mutants, accumulation of Atg9 in the vacuolar lumen was observed upon autophagy induction. Nevertheless, PAS localization of Atg9 was normal in atg27(ΔYSAV) cells. The vacuole lumen localization of Atg9 was dependent on transport through the multivesicular body, as Atg9 accumulated in the class E compartment and vacuole membrane in atg27(ΔYSAV) vps4Δ but not in ATG27 vps4Δ cells. We suggest that Atg27 has an additional role to retain Atg9 in endosomal reservoirs that can be mobilized during autophagy.   相似文献   

8.
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate‐rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF‐MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density‐gradient ultracentrifugation. The vacuole‐containing fraction was subjected to SDS–PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non‐lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o‐methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin‐tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.  相似文献   

9.
The conserved vacuolar protein-sorting (Vps) pathway controls the trafficking of proteins to the vacuole/lysosome. Both the internalization of ubiquitylated cargo from the plasma membrane and its sorting at the late endosome via the Vps pathway depend on ubiquitin (Ub) binding motifs present in trafficking regulators. Here we report that Ub controls yet a third step in the Vps pathway. Vps9p, which promotes endosomal and Golgi-derived vesicle fusion, binds directly to Ub via a Cue1p-homologous (CUE) domain. The CUE domain is structurally related to the Ub-associated (UBA) domain. In an assay for vacuolar delivery of a transmembrane receptor fused to Ub, a Ub mutation impairing interaction with Vps9p led to a cytoplasmic block in receptor trafficking. This block resembled that of a receptor fused to wild-type Ub but expressed in a vps9-null background. Strikingly, this trafficking defect caused by a mutant Ub was rescued by deletion of the Vps9p CUE domain, indicating that lack of the CUE domain renders Vps9p independent of Ub for activation in vivo. We thus provide evidence for biochemical and genetic interactions between Ub and a novel Ub binding domain in Vps9p. Ub plays a positive role, whereas the CUE domain plays both positive and negative roles in Vps9p function in trafficking.  相似文献   

10.
A novel genetic selection was used to identify genes regulating traffic in the yeast endosomal system. We took advantage of a temperature-sensitive mutant in PMA1, encoding the plasma membrane ATPase, in which newly synthesized Pma1 is mislocalized to the vacuole via the endosome. Diversion of mutant Pma1 from vacuolar delivery and rerouting to the plasma membrane is a major mechanism of suppression of pma1ts. 16 independent suppressor of pma1 (sop) mutants were isolated. Identification of the corresponding genes reveals eight that are identical with VPS genes required for delivery of newly synthesized vacuolar proteins. A second group of SOP genes participates in vacuolar delivery of mutant Pma1 but is not essential for delivery of the vacuolar protease carboxypeptidase Y. Because the biosynthetic pathway to the vacuole intersects with the endocytic pathway, internalization of a bulk membrane endocytic marker FM 4-64 was assayed in the sop mutants. By this means, defective endosome-to-vacuole trafficking was revealed in a subset of sop mutants. Another subset of sop mutants displays perturbed trafficking between endosome and Golgi: impaired pro-α factor processing in these strains was found to be due to defective recycling of the trans-Golgi protease Kex2. One of these strains defective in Kex2 trafficking carries a mutation in SOP2, encoding a homologue of mammalian synaptojanin (implicated in synaptic vesicle endocytosis and recycling). Thus, cell surface delivery of mutant Pma1 can occur as a consequence of disturbances at several different sites in the endosomal system.  相似文献   

11.
12.
Biogenesis of a specialized organelle that supports intracellular replication of Legionella pneumophila involves the fusion of secretory vesicles exiting the endoplasmic reticulum (ER) with phagosomes containing this bacterial pathogen. Here, we investigated host plasma membrane SNARE proteins to determine whether they play a role in trafficking of vacuoles containing L. pneumophila. Depletion of plasma membrane syntaxins by RNA interference resulted in delayed acquisition of the resident ER protein calnexin and enhanced retention of Rab1 on phagosomes containing virulent L. pneumophila, suggesting that these SNARE proteins are involved in vacuole biogenesis. Plasma membrane‐localized SNARE proteins syntaxin 2, syntaxin 3, syntaxin 4 and SNAP23 localized to vacuoles containing L. pneumophila. The ER‐localized SNARE protein Sec22b was found to interact with plasma membrane SNAREs on vacuoles containing virulent L. pneumophila, but not on vacuoles containing avirulent mutants of L. pneumophila. The addition of α‐SNAP and N‐ethylmaleimide‐sensitive factor (NSF) to the plasma membrane SNARE complexes formed by virulent L. pneumophila resulted in the dissociation of Sec22b, indicating functional pairing between these SNAREs. Thus, L. pneumophila stimulates the non‐canonical pairing of plasma membrane t‐SNAREs with the v‐SNARE Sec22b to promote fusion of the phagosome with ER‐derived vesicles. The mechanism by which L. pneumophila promotes pairing of plasma membrane syntaxins and Sec22b could provide unique insight into how the secretory vesicles could provide an additional membrane reserve subverted during phagosome maturation.  相似文献   

13.
Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3fT22N) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.  相似文献   

14.
In addition to the classical functions of flavonoids in the response to biotic/abiotic stress conditions, these phenolic compounds have been implicated in the modulation of various developmental processes. These findings suggest that flavonoids are more integral components of the plant signaling machinery than traditionally recognized. To understand how flux through the flavonoid pathway affects plant cellular processes, we used wild‐type and chalcone isomerase mutant (transparent testa 5, tt5) seedlings grown under anthocyanin inductive conditions, in the presence or absence of the flavonoid intermediate naringenin, the product of the chalcone isomerase enzyme. Because flavonoid biosynthetic genes are expressed under anthocyanin inductive conditions regardless of whether anthocyanins are formed or not, this system provides an excellent opportunity to specifically investigate the molecular changes associated with increased flux through the flavonoid pathway. By assessing genome‐wide mRNA accumulation changes in naringenin‐treated and untreated tt5 and wild‐type seedlings, we identified a flavonoid‐responsive gene set associated with cellular trafficking, stress responses and cellular signaling. Jasmonate biosynthetic genes were highly represented among the signaling pathways induced by increased flux through the flavonoid pathway. In contrast to studies showing a role for flavonoids in the control of auxin transport, no effect on auxin‐responsive genes was observed. Taken together, our data suggest that Arabidopsis can sense flavonoids as a signal for multiple fundamental cellular processes.  相似文献   

15.
Autophagy is a vacuolar trafficking pathway that targets subcellular constituents to the vacuole for degradation and recycling. In nutrient-rich conditions in yeast, a different vacuolar trafficking pathway, the cytoplasm to vacuole targeting (Cvt) pathway, transports the resident hydrolase aminopeptidase I to the vacuole, using many of the same molecular components as autophagy. The Cvt pathway is constitutive, whereas autophagy is induced by starvation. Recent studies have laid important groundwork for understanding the signaling mechanism that induces autophagy. Another key advance has been the identification of two novel conjugation systems that function in vesicle formation in both pathways. Finally, many autophagy- and Cvt-specific gene products, including those involved in lipid modification, vesicle expansion and cargo specificity, have been shown to localize to a novel perivacuolar membrane compartment. Additional analysis of this location will help in further dissecting the early events of vesicle formation and identifying the source of the sequestering membrane.  相似文献   

16.
The late endosome and vacuole of yeast Saccharomyces cerevisiae are functionally equivalent to the mammalian late endosome and lysosome. The late endosome is the convergence point of the biosynthetic and endocytic trafficking to the vacuole. Here, we describe a novel immunodetection screen to isolate mutants defective in trafficking the soluble hydrolase carboxypeptidase Y (CPY) at the late endosome to vacuole interface (env mutants). Mutants exhibit vacuolar morphology and endocytosis defects as assayed by electron, fluorescent, and nomarski microscopy. In biochemical assays, they internally accumulate p2CPY in a dense membrane compartment lacking vacuolar properties yet display normal secretion phenotypes. The results suggest vacuolar morphology and function defects that are exclusively at the late endosome/vacuole interface. env mutants define five complementation groups. The first gene of the collection to be cloned, ENV1 is allelic to VPS35 whose established function is in retrograde trafficking from late endosome to trans-Golgi network (TGN). Microscopic, biochemical, and growth analyses establish that env1 is distinct from other alleles of VPS35 in vacuolar morphology, growth characteristics, and internal accumulation of p2CPY. Our results indicate that ENV genes may define new gene functions at the late endosome to vacuole interface.  相似文献   

17.
Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best‐studied metabolic pathways. Here we have identified three mutations within a gene that result in pale‐colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)‐related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio‐temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3‐MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale‐colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species.  相似文献   

18.
The Arl3‐Arl1 GTPase cascade plays important roles in vesicle trafficking at the late Golgi and endosomes. Subunits of the conserved oligomeric Golgi (COG) complex, a tethering factor, are important for endosome‐to‐Golgi transport and contribute to the efficient functioning of the cytoplasm‐to‐vacuole targeting (Cvt) pathway, a well‐known selective autophagy pathway. According to our findings, the Arl3‐Arl1 GTPase cascade co‐operates with Cog8 to regulate the Cvt pathway via Atg9 trafficking. arl3cog8Δ and arl1cog8Δ exhibit profound defects in aminopeptidase I maturation in rich medium. In addition, the Arl3‐Arl1 cascade acts on the Cvt pathway via dynamic nucleotide binding. Furthermore, Atg9 accumulates at the late Golgi in arl3cog8Δ and arl1cog8Δ cells under normal growth conditions but not under starvation conditions. Thus, our results offer insight into the requirement for multiple components in the Golgi‐endosome system to determine Atg9 trafficking at the Golgi, thereby regulating selective autophagy.   相似文献   

19.
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post‐translationally modified by the attachment of N‐glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex‐type N‐glycans, which are located in the N‐terminal ‘PA domain’, the central region and the C‐terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N‐glycans do not affect the targeting of AtVSR1 to pre‐vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N‐glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N‐glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.  相似文献   

20.
Plants employ multiple cell‐autonomous defense mechanisms to impede pathogenesis of microbial intruders. Previously we identified an exocytosis defense mechanism in Arabidopsis against pathogenic powdery mildew fungi. This pre‐invasive defense mechanism depends on the formation of ternary protein complexes consisting of the plasma membrane‐localized PEN1 syntaxin, the adaptor protein SNAP33 and closely sequence‐related vesicle‐resident VAMP721 or VAMP722 proteins. The Arabidopsis thaliana resistance to powdery mildew 8.2 protein (RPW8.2) confers disease resistance against powdery mildews upon fungal entry into host cells and is specifically targeted to the extrahaustorial membrane (EHM), which envelops the haustorial complex of the fungus. However, the secretory machinery involved in trafficking RPW8.2 to the EHM is unknown. Here we report that RPW8.2 is transiently located on VAMP721/722 vesicles, and later incorporated into the EHM of mature haustoria. Resistance activity of RPW8.2 against the powdery mildew Golovinomyces orontii is greatly diminished in the absence of VAMP721 but only slightly so in the absence of VAMP722. Consistent with this result, trafficking of RPW8.2 to the EHM is delayed in the absence of VAMP721. These findings implicate VAMP721/722 vesicles as key components of the secretory machinery for carrying RPW8.2 to the plant–fungal interface. Quantitative fluorescence recovery after photobleaching suggests that vesicle‐mediated trafficking of RPW8.2–yellow fluorescent protein (YFP) to the EHM occurs transiently during early haustorial development and that lateral diffusion of RPW8.2–YFP within the EHM exceeds vesicle‐mediated replenishment of RPW8.2–YFP in mature haustoria. Our findings imply the engagement of VAMP721/722 in a bifurcated trafficking pathway for pre‐invasive defense at the cell periphery and post‐invasive defense at the EHM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号