首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of cancer cell-stroma interaction in invasive growth of cancer cells   总被引:7,自引:0,他引:7  
Invasive growth is one of the hallmarks of cancer malignancy. To date, a significant body of evidence is accumulating in favor of the notion that invasive growth results from the cross-talk between cancer cells and the host stromal cells, comprising fibroblasts (myofibroblasts), endothelial cells, and leukocytes, all of which are themselves invasive. In this review we describe cross-talk between invasive cancer cells and host stromal fibroblasts and an impact of pericellular microenvironment on the invasive phenotype of cancer cells, focusing on two molecules, extracellular matrix metalloproteinase inducer (EMMPRIN, also known as tumor cell-derived collagenase stimulatory factor, basigin, CD147) and hepatocyte growth factor (HGF, also known as scatter factor). Both molecules are deeply involved in the regulation of invasion-associated cellular activities, such as pericellular proteolysis, migration and ectopic survival of cancer cells.  相似文献   

2.
Cellular senescence is an anti‐proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell‐autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non‐cell‐autonomous manner. These non‐cell‐autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence‐associated secretory phenotype. One of the key functions of the senescence‐associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti‐cancer and anti‐aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.  相似文献   

3.
The tumor immune microenvironment (TIME) is the cellular environment in which tumors exist. This includes: surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, lymphocytes, signaling molecules, immune checkpoint proteins and the extracellular matrix (ECM). The TIME plays a critical role in cancer progression and regulation. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells. The molecules and cells in the TIME influence disease outcome by altering the balance of suppressive versus cytotoxic responses in the vicinity of the tumor. Having a better understanding of the tumor immune microenvironment will pave the way for identifying new targets for immunotherapies that promote cancer elimination.  相似文献   

4.
Tumors are characterized by extracellular matrix (ECM) deposition, remodeling, and cross-linking that drive fibrosis to stiffen the stroma and promote malignancy. The stiffened stroma enhances tumor cell growth, survival and migration and drives a mesenchymal transition. A stiff ECM also induces angiogenesis, hypoxia and compromises anti-tumor immunity. Not surprisingly, tumor aggression and poor patient prognosis correlate with degree of tissue fibrosis and level of stromal stiffness. In this review, we discuss the reciprocal interplay between tumor cells, cancer associated fibroblasts (CAF), immune cells and ECM stiffness in malignant transformation and cancer aggression. We discuss CAF heterogeneity and describe its impact on tumor development and aggression focusing on the role of CAFs in engineering the fibrotic tumor stroma and tuning tumor cell tension and modulating the immune response. To illustrate the role of mechanoreciprocity in tumor evolution we summarize data from breast cancer and pancreatic ductal carcinoma (PDAC) studies, and finish by discussing emerging anti-fibrotic strategies aimed at treating cancer.  相似文献   

5.

Background

The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression.

Results

Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor’s inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer.

Conclusions

Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
  相似文献   

6.
The stroma is a main driver of metastasis and aggressiveness in pancreatic cancer (PC), one of the deadliest malignancies worldwide. Pancreatic stellate cells (PSCs) form approximately 50% of the pancreatic tumor stroma, causing desmoplasia, extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT) and metastatic spread. Furthermore, activated PSCs can remodel the pancreatic tumor microenvironment (TME) via dynamic and complex interactions and feedback loops with PC cells, thus facilitating tumor growth through various signalling and immune pathways. Hence, increased understanding of these cellular cross-talks and how they shape the TME in PC might guide the development of novel treatment approaches against this stubborn and deadly malignancy that has so far resisted therapeutic advances. In this review, we will explore the role of the stroma and PSCs in PC development, invasion and metastasis, examine their interaction with PC cells and discuss potential treatment approaches aimed at targeting PSCs in order to reprogram the pancreatic tumor environment.  相似文献   

7.
Both healthy and cancerous breast tissue is heterogeneous, which is a bottleneck for proteomics‐based biomarker analysis, as it obscures the cellular origin of a measured protein. We therefore aimed at obtaining a protein‐level interpretation of malignant transformation through global proteome analysis of a variety of laser capture microdissected cells originating from benign and malignant breast tissues. We compared proteomic differences between these tissues, both from cells of epithelial origin and the stromal environment, and performed string analysis. Differences in protein abundances corresponded with several hallmarks of cancer, including loss of cell adhesion, transformation to a migratory phenotype, and enhanced energy metabolism. Furthermore, despite enriching for (tumor) epithelial cells, many changes to the extracellular matrix were detected in microdissected cells of epithelial origin. The stromal compartment was heterogeneous and richer in the number of fibroblast and immune cells in malignant sections, compared to benign tissue sections. Furthermore, stroma could be clearly divided into reactive and nonreactive based on extracellular matrix disassembly proteins. We conclude that proteomics analysis of both microdissected epithelium and stroma gives an additional layer of information and more detailed insight into malignant transformation.  相似文献   

8.
In the mammary gland, epithelial cells are embedded in a ‘soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for β-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of β-casein expression required both laminin signalling and a ‘soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of β-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues' unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.  相似文献   

9.
Hallmarks of cancer: the next generation   总被引:29,自引:0,他引:29  
Hanahan D  Weinberg RA 《Cell》2011,144(5):646-674
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.  相似文献   

10.
Stromal-epithelial interactions regulate mammary gland development and are critical for the maintenance of tissue homeostasis. The extracellular matrix, which is a proteinaceous component of the stroma, regulates mammary epithelial growth, survival, migration and differentiation through a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue organization, and promote cell invasion and survival. In this review, we discuss the role of stromal-epithelial interactions in normal and malignant mammary epithelial cell behavior. We specifically focus on how dynamic modulation of the biochemical and biophysical properties of the extracellular matrix elicit a dialogue with the mammary epithelium through transmembrane integrin receptors to influence tissue morphogenesis, homeostasis and malignant transformation.  相似文献   

11.
12.
转化生长因子β(transforming growth factorβ,TGF-β)是一种多功能的细胞因子,能够调控细胞增殖、分化、黏附、迁移及凋亡等行为,在胚胎发育过程和成体组织稳态维持中发挥重要的作用。而在许多疾病状态下,特别是在癌症中,TGF-β不仅能够影响肿瘤细胞的增殖与转移,其对于肿瘤微环境的调控与塑造也受到越来越多的关注。肿瘤微环境是指肿瘤在发生和发展过程中所处的内环境,由肿瘤细胞本身、相邻正常组织中的间质细胞,以及这些细胞所释放的众多细胞因子等共同组成。肿瘤微环境是肿瘤发展的重要机制,也是肿瘤临床治疗领域亟待探索的关键问题。TGF-β是调节肿瘤微环境组成和功能的主要参与者之一。在本综述中,将着重讨论TGF-β对于肿瘤微环境中的免疫监视机制及肿瘤细胞外基质的主要影响。即TGF-β对于构成先天性和获得性抗肿瘤免疫应答的各种类群的免疫细胞具有广泛的调控作用,从而削弱宿主的肿瘤免疫监视功能。同时,TGF-β通过促进肿瘤相关成纤维细胞的产生,以及肿瘤细胞外基质的纤维化,有助于肿瘤的恶变和转移。此外,还介绍了通过阻断肿瘤微环境中TGF-β信号通路进行肿瘤治疗的主要策略及独特优势。而未来进一步解析TGF-β信号在肿瘤微环境中的复杂调控作用,并建立有效的靶向干预方法对于开发高效的抗肿瘤药物具有重要的意义。  相似文献   

13.
The tumor microenvironment (TME) is cellular environment in addition to harboring carcinoma cells, consists of different components (e.g., blood vessels, immune cells, fibroblasts, bone marrow‐derived inflammatory cells, lymphocytes, signaling molecules, and the extracellular matrix) that have an essential role on drug activity and efficacy. There is growing body of evidence showing its involvement in the progression and metastasis of different cancers, including breast cancer (BC). These observations provide a proof of concept of targeting TME compartments as a novel potential therapeutic approach in treatment of this malignancy, which is the main interested for current review. J. Cell. Biochem. 119: 111–122, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
Dendritic cells and innate defense against tumor cells   总被引:1,自引:0,他引:1  
Tumor growth results from a delicate balance between intrinsic dysregulation of oncogenes, tumor suppressor and stability genes counteracted by extrinsic defenses composed of immune cells shaping tumor immunogenicity. Although immune subversion might be the ultimate outcome of this process, a complex network of cellular interactions take place eventually leading to tumor specific cognate immune responses. The links between innate and cognate antitumor immunity eliciting protective T cell responses are instigated by cytokines, chemokines and damage associated molecular patterns. The intricate differentiation pathway whereby dendritic cells could undergo an efficient maturation program in the tumor microenvironment appears crucial. We will discuss the role of innate effectors and cancer therapies in the process of defense against tumor cells.  相似文献   

15.
越来越多的研究表明,肿瘤细胞与其周围微环境的交互作用是肿瘤发生、上皮间质转化、肿瘤浸润和转移的关键调节因素.肝细胞癌的微环境可以分为细胞组分和非细胞组分.主要的细胞组分包含:肝星形细胞、肿瘤相关的纤维母细胞、免疫细胞和肝窦内皮细胞等.非细胞组分包含:胞外基质蛋白、酶类、各种生长因子和炎症因子等.综述了近年来肝细胞癌的微环境研究进展,分别从细胞组分和非细胞组分及其之间的相互作用角度对肝细胞癌微环境作一介绍.  相似文献   

16.
黏着斑激酶(focal adhesion kinase, FAK)是一种胞质非受体酪氨酸激酶。FAK和肿瘤密切相关,在多种癌细胞中高表达,促进癌细胞的发生、生长、存活、增殖、粘附、转移和侵袭以及血管生成等过程。肿瘤微环境包括肿瘤细胞、周围血管、免疫细胞、纤维母细胞、内皮细胞、信号分子和细胞外基质,它对癌症的发展和恶化具有重要作用。肿瘤细胞可以通过分泌细胞外信号影响微环境,使其有利于肿瘤生存和发展|肿瘤微环境中的基质细胞能通过产生趋化因子、基质降解酶和生长因子促进肿瘤侵袭和转移。本文综述肿瘤微环境在癌症发生发展过程中的作用及FAK在肿瘤微环境中的调控作用,为肿瘤疾病的治疗提供新思路。  相似文献   

17.
18.
实体瘤的发生发展常伴随着细胞外基质的异常沉积、交联和基质刚度增加.基质刚度增加和肿瘤细胞软化引起肿瘤微环境的力学异质性.基质力学通过影响肿瘤细胞的增殖、迁移、转移、上皮间质转换、肿瘤干细胞特性和耐药性等调控肿瘤的发生、恶性转变和转移.研究基质力学对肿瘤发生发展的影响不仅可深化对肿瘤发展的认识,也可为研究新的诊治方法提供理论基础.本文论述了细胞外基质力学特性对肿瘤发生发展及肿瘤细胞生物学行为影响的研究进展,并展望了其发展前景.  相似文献   

19.
Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs break down the extracellular matrix (ECM), migrate, differentiate and undergo tube morphogenesis. Evidently, the ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behaviour. Using a chemically and mechanically tunable hydrogel to study tube morphogenesis in vitro, we show that vascular endothelial growth factor (VEGF) and substrate mechanics co‐regulate tubulogenesis of EPCs. High levels of VEGF are required to initiate tube morphogenesis and activate matrix metalloproteinases (MMPs), which enable EPC migration. Under these conditions, the elasticity of the substrate affects the progression of tube morphogenesis. With decreases in substrate stiffness, we observe decreased MMP expression while increased cellular elongation, with intracellular vacuole extension and coalescence to open lumen compartments. RNAi studies demonstrate that membrane type 1‐MMP (MT1‐MMP) is required to enable the movement of EPCs on the matrix and that EPCs sense matrix stiffness through signalling cascades leading to the activation of the RhoGTPase Cdc42. Collectively, these results suggest that coupled responses for VEGF stimulation and modulation of substrate stiffness are required to regulate tube morphogenesis of EPCs.  相似文献   

20.
Living cells are continuously exposed to mechanical cues, and can translate these signals into biochemical information (e.g. mechanotransduction). This process is crucial in many normal cellular functions, e.g. cell adhesion, migration, proliferation, and survival, as well as the progression of diseases such as cancer. Focal adhesions are the major sites of interactions between extracellular mechanical environments and intracellular biochemical signalling molecules/cytoskeleton, and hence focal adhesion proteins have been suggested to play important roles in mechanotransduction. Here, we overview the current molecular understanding in mechanotransduction occurring at focal adhesions. We also introduce recent studies on how extracellular matrix and mechanical microenvironments contribute to the development of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号