首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the direct observation of microstructural changes of LixSi electrode with lithium insertion. HRTEM experiments confirm that lithiated amorphous silicon forms a shell around a core made up of the unlithiated silicon and that fully lithiated silicon contains a large number of pores of which concentration increases toward the center of the particle. Chemomechanical modeling is employed in order to explain this mechanical degradation resulting from stresses in the LixSi particles with lithium insertion. Because lithiation‐induced volume expansion and pulverization are the key mechanical effects that plague the performance and lifetime of high‐capacity Si anodes in lithium‐ion batteries, our observations and chemomechanical simulation provide important mechanistic insight for the design of advanced battery materials.  相似文献   

2.
Due to the high lithium capacity of silicon, the composite (blended) electrodes containing silicon (Si) and graphite (Gr) particles are attractive alternatives to the all‐Gr electrodes used in conventional lithium‐ion batteries. In this Communication, the lithiation and delithiation in the Si and Gr particles in a 15 wt% Si composite electrode is quantified for each component using energy dispersive X‐ray diffraction. This quantification is important as the components cycle in different potential regimes, and interpretation of cycling behavior is complicated by the potential hysteresis displayed by Si. The lithiation begins with Li alloying with Si; lithiation of Gr occurs at later stages when the potential dips below 0.2 V (all potentials are given vs Li/Li+). In the 0.2–0.01 V range, the relative lithiation of Si and Gr is ≈58% and 42%, respectively. During delithiation, Li+ ion extraction occurs preferentially from Gr in the 0.01–0.23 V range and from Si in the 0.23–1.0 V range; that is, the delithiation current is carried sequentially, first by Gr and then by Si. These trends can be used for rational selection of electrochemical cycling windows that limits volumetric expansion in Si particles, thereby extending cell life.  相似文献   

3.
All‐solid‐state thin film lithium batteries are promising devices to power the next generations of autonomous microsystems. Nevertheless, some industrial constraints such as the resistance to reflow soldering (260 °C) and to short‐circuiting necessitate the replacement of the lithium anode. In this study, a 2 V lithium‐ion system based on amorphous silicon nanofilm anodes (50–200 nm thick), a LiPON electrolyte, and a new lithiated titanium oxysulfide cathode Li1.2TiO0.5S2.1 is prepared by sputtering. The determination of the electrochemical behavior of each active material and of whole systems with different configurations allows the highlighting of the particular behavior of the LixSi electrode and the understanding of its consequences on the performance of Li‐ion cells. Lithium‐ion microbatteries processed with industrial tools and embedded in microelectronic packages exhibit particularly high cycle life (?0.006% cycle?1), ultrafast charge (80% capacity in 1 min), and tolerate both short‐circuiting and reflow soldering. Moreover, the perfect stability of the system allows the assignment of some modifications of the voltage curve and a slow and reversible capacity fade occurring in specific conditions, to the formation of Li15Si4 and to the expression of a “memory effect.” These new findings will help to optimize the design of future Li‐ion systems using nanosized silicon anodes.  相似文献   

4.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

5.
While the use of silicon‐based electrodes can increase the capacity of Li‐ion batteries considerably, their application is associated with significant capacity losses. In this work, the influences of solid electrolyte interphase (SEI) formation, volume expansion, and lithium trapping are evaluated for two different electrochemical cycling schemes using lithium‐metal half‐cells containing silicon nanoparticle–based composite electrodes. Lithium trapping, caused by incomplete delithiation, is demonstrated to be the main reason for the capacity loss while SEI formation and dissolution affect the accumulated capacity loss due to a decreased coulombic efficiency. The capacity losses can be explained by the increasing lithium concentration in the electrode causing a decreasing lithiation potential and the lithiation cut‐off limit being reached faster. A lithium‐to‐silicon atomic ratio of 3.28 is found for a silicon electrode after 650 cycles using 1200 mAhg?1 capacity limited cycling. The results further show that the lithiation step is the capacity‐limiting step and that the capacity losses can be minimized by increasing the efficiency of the delithiation step via the inclusion of constant voltage delithiation steps. Lithium trapping due to incomplete delithiation consequently constitutes a very important capacity loss phenomenon for silicon composite electrodes.  相似文献   

6.
Li2MnO3 is the parent compound of the well‐studied Li‐rich Mn‐based cathode materials xLi2MnO3·(1‐x)LiMO2 for high‐energy‐density Li‐ion batteries. Li2MnO3 has a very high theoretical capacity of 458 mA h g?1 for extracting 2 Li. However, the delithiation and lithiation behaviors and the corresponding structure evolution mechanism in both Li2MnO3 and Li‐rich Mn‐based cathode materials are still not very clear. In this research, the atomic structures of Li2MnO3 before and after partial delithiation and re‐lithiation are observed with spherical aberration‐corrected scanning transmission electron microscopy (STEM). All atoms in Li2MnO3 can be visualized directly in annular bright‐field images. It is confirmed accordingly that the lithium can be extracted from the LiMn2 planes and some manganese atoms can migrate into the Li layer after electrochemical delithiation. In addition, the manganese atoms can move reversibly in the (001) plane when ca. 18.6% lithium is extracted and 12.4% lithium is re‐inserted. LiMnO2 domains are also observed in some areas in Li1.63MnO3 at the first cycle. As for the position and occupancy of oxygen, no significant difference is found between Li1.63MnO3 and Li2MnO3.  相似文献   

7.
Anatase TiO2 is an extensively studied anode material for lithium‐ion batteries because of its superior capability of storing Li+ electrochemically. Here reversible lithium storage of TiO2 is achieved chemically using redox targeting reactions. In the presence of a pair of redox mediators, bis(pentamethylcyclopentadienyl)cobalt (CoCp* 2) and cobaltocene (CoCp2) in an electrolyte, TiO2 and its lithiated form Li x TiO2 can be reduced and oxidized by CoCp* 2 and CoCp2 +, respectively, which accompany Li+ insertion and extraction, albeit without attaching the TiO2 onto the electrode. The reversible chemical lithiation/delithiation and the involved phase transitions are unambiguously confirmed using density functional theory (DFT) calculations, UV‐vis spectroscopy, X‐ray photoelectron spectoscopy (XPS), and Raman spectroscopy. A redox flow lithium‐ion battery (RFLB) half‐cell is assembled and evaluated, which is a critical step towards the development of RFLB full cells.  相似文献   

8.
All‐solid‐state batteries (ASSBs) with silicon anodes are promising candidates to overcome energy limitations of conventional lithium‐ion batteries. However, silicon undergoes severe volume changes during cycling leading to rapid degradation. In this study, a columnar silicon anode (col‐Si) fabricated by a scalable physical vapor deposition process (PVD) is integrated in all‐solid‐state batteries based on argyrodite‐type electrolyte (Li6PS5Cl, 3 mS cm?1) and Ni‐rich layered oxide cathodes (LiNi0.9Co0.05Mn0.05O2, NCM) with a high specific capacity (210 mAh g?1). The column structure exhibits a 1D breathing mechanism similar to lithium, which preserves the interface toward the electrolyte. Stable cycling is demonstrated for more than 100 cycles with a high coulombic efficiency (CE) of 99.7–99.9% in full cells with industrially relevant areal loadings of 3.5 mAh cm?2, which is the highest value reported so far for ASSB full cells with silicon anodes. Impedance spectroscopy revealed that anode resistance is drastically reduced after first lithiation, which allows high charging currents of 0.9 mA cm?2 at room temperature without the occurrence of dendrites and short circuits. Finally, in‐operando monitoring of pouch cells gave valuable insights into the breathing behavior of the solid‐state cell.  相似文献   

9.
This work introduces an effective, inexpensive, and large‐scale production approach to the synthesis of a carbon coated, high grain boundary density, dual phase Li4Ti5O12‐TiO2 nanocomposite anode material for use in rechargeable lithium‐ion batteries. The microstructure and morphology of the Li4Ti5O12‐TiO2‐C product were characterized systematically. The Li4Ti5O12‐TiO2‐C nanocomposite electrode yielded good electrochemical performance in terms of high capacity (166 mAh g?1 at a current density of 0.5 C), good cycling stability, and excellent rate capability (110 mAh g?1 at a current density of 10 C up to 100 cycles). The likely contributing factors to the excellent electrochemical performance of the Li4Ti5O12‐TiO2‐C nanocomposite could be related to the improved morphology, including the presence of high grain boundary density among the nanoparticles, carbon layering on each nanocrystal, and grain boundary interface areas embedded in a carbon matrix, where electronic transport properties were tuned by interfacial design and by varying the spacing of interfaces down to the nanoscale regime, in which the grain boundary interface embedded carbon matrix can store electrolyte and allows more channels for the Li+ ion insertion/extraction reaction. This research suggests that carbon‐coated dual phase Li4Ti5O12‐TiO2 nanocomposites could be suitable for use as a high rate performance anode material for lithium‐ion batteries.  相似文献   

10.
It has become clear that cycling lithium‐oxygen cells in carbonate electrolytes is impractical, as electrolyte decomposition, triggered by oxygen reduction products, dominates the cell chemistry. This research shows that employing an α‐MnO2/ramsdellite‐MnO2 electrode/electrocatalyst results in the formation of lithium‐oxide‐like discharge products in propylene carbonate, which has been reported to be extremely susceptible to decomposition. X‐ray photoelectron data have shown that what are likely lithium oxides (Li2O2 and Li2O) appear to form and decompose on the air electrode surface, particularly at the MnO2 surface, while Li2CO3 is also formed. By contrast, cells without α‐MnO2/ramsdellite‐MnO2 fail rapidly in electrochemical cycling, likely due to the differences in the discharge product. Relatively high electrode capacities, up to 5000 mAh/g (carbon + electrode/electrocatalyst), have been achieved with non‐optimized air electrodes. Insights into reversible insertion reactions of lithium, lithium peroxide (Li2O2) and lithium oxide (Li2O) in the tunnels of α‐MnO2, and the reaction of lithium with ramsdellite‐MnO2, as determined by first principles density functional theory calculations, are used to provide a possible explanation for some of the observed results. It is speculated that a Li2O‐stabilized and partially‐lithiated electrode component, 0.15Li2α‐LixMnO2, that has Mn4+/3+ character may facilitate the Li2O2/Li2O discharge/charge chemistries providing dual electrode/electrocatalyst functionality.  相似文献   

11.
Current battery technologies are known to suffer from kinetic problems associated with the solid‐state diffusion of Li+ in intercalation electrodes materials. Not only the use of nanostructure materials but also the design of electrode architectures can lead to more advanced properties. Here, advanced electrode architectures consisting of carbon textiles conformally covered by Li4Ti5O12 nanocrystal are rationally designed and synthesized for lithium ion batteries. The efficient two‐step synthesis involves the growth of ultrathin TiO2 nanosheets on carbon textiles, and subsequent conversion into spinel Li4Ti5O12 through chemical lithiation. Importantly, this novel approach is simple and general, and it is used to successfully produce LiMn2O4/carbon composites textiles, one of the leading cathode materials for lithium ion batteries. The resulting 3D textile electrode, with various advantages including the direct electronic pathway to current collector, the easy access of electrolyte ions, the reduced Li+/e? diffusion length, delivers excellent rate capability and good cyclic stability over the Li‐ion batteries of conventional configurations.  相似文献   

12.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

13.
The lithiation mechanism of methylated amorphous silicon, a‐Si1?x(CH3)x:H, with various methyl contents (x = 0 ‐ 0.12) is investigated using operando attenuated total reflection Fourier transform infrared spectroscopy. As in hydrogenated amorphous silicon, a‐Si:H, the first lithiation proceeds via a two‐phase mechanism. The concentration of the invading Li‐rich phase nonmonotonously depends on the methyl content of the active material. This behavior is tentatively explained by two distinct effects: a softening of the material due to a methyl‐induced lowering of its reticulation degree and its cohesion, and the presence of nanovoids at high enough methyl content.  相似文献   

14.
Securing the chemical and physical stabilities of electrode/solid‐electrolyte interfaces is crucial for the use of solid electrolytes in all‐solid‐state batteries. Directly probing these interfaces during electrochemical reactions would significantly enrich the mechanistic understanding and inspire potential solutions for their regulation. Herein, the electrochemistry of the lithium/Li7La3Zr2O12‐electrolyte interface is elucidated by probing lithium deposition through the electrolyte in an anode‐free solid‐state battery in real time. Lithium plating is strongly affected by the geometry of the garnet‐type Li7La3Zr2O12 (LLZO) surface, where nonuniform/filamentary growth is triggered particularly at morphological defects. More importantly, lithium‐growth behavior significantly changes when the LLZO surface is modified with an artificial interlayer to produce regulated lithium depositions. It is shown that lithium‐growth kinetics critically depend on the nature of the interlayer species, leading to distinct lithium‐deposition morphologies. Subsequently, the dynamic role of the interlayer in battery operation is discussed as a buffer and seed layer for lithium redistribution and precipitation, respectively, in tailoring lithium deposition. These findings broaden the understanding of the electrochemical lithium‐plating process at the solid‐electrolyte/lithium interface, highlight the importance of exploring various interlayers as a new avenue for regulating the lithium‐metal anode, and also offer insight into the nature of lithium growth in anode‐free solid‐state batteries.  相似文献   

15.
Metal oxides, such as Fe3O4, hold promise for future battery applications due to their abundance, low cost, and opportunity for high lithium storage capacity. In order to better understand the mechanisms of multiple‐electron transfer reactions leading to high capacity in Fe3O4, a comprehensive investigation on local ionic transport and ordering is made by probing site occupancies of anions (O2?) and cations (Li+, Fe3+/Fe2+) using multiple synchrotron X‐ray and electron‐beam techniques, in combination with ab‐initio calculations. Results from this study provide the first experimental evidence that the cubic‐close‐packed (ccp) O‐anion array in Fe3O4 is sustained throughout the lithiation and delithiation processes, thereby enabling multiple lithium intercalation and conversion reactions. Cation displacement/reordering occurs within the ccp O‐anion framework, which leads to a series of phase transformations, starting from the inverse spinel phase and turning into intermediate rock‐salt‐like phases (LixFe3O4; 0 < x < 2), then into a cation‐segregated phase (Li2O?FeO), and finally converting into metallic Fe and Li2O. Subsequent delithiation and lithiation processes involve interconversion between metallic Fe and FeO‐like phases. These results may offer new insights into the structure‐determined ionic transport and electrochemical reactions in metal oxides, and those of other compounds sharing a ccp anion framework, reminiscent of magnetite.  相似文献   

16.
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries.  相似文献   

17.
Solid electrolytes represent a critical component in future batteries that provide higher energy and power densities than the current lithium‐ion batteries. The potential of using ultrathin films is among the best merits of solid electrolytes for considerably reducing the weight and volume of each battery unit, thereby significantly enhancing the energy density. However, it is challenging to fabricate ultrathin membranes of solid electrolytes using the conventional techniques. Here, a new strategy is reported for fabricating sub‐micrometer‐thick membranes of β‐Li3PS4 solid electrolytes via tiled assembly of shape‐controlled, nanoscale building blocks. This strategy relies on facile, low‐cost, solution‐based chemistry to create membranes with tunable thicknesses. The ultrathin membranes of β‐Li3PS4 show desirable ionic conductivity and necessary compatibility with metallic lithium anodes. The results of this study also highlight a viable strategy for creating ultrathin, dense solid electrolytes with high ionic conductivities for the next‐generation energy storage and conversion systems.  相似文献   

18.
The γ phase Li3VO4 which possesses higher ionic conductivity is more preferable for lithium ion batteries, but it is only stable at high temperature and would convert to low temperature β phase spontaneously when cooling down. Here, the phase control of Li3VO4 to stabilize its γ phase in room temperature is successfully mediated by introducing proper Si‐doping, and for the first time the electrochemical performances of γ‐Li3VO4 is investigated. It is found that pure γ‐Li3VO4 can be obtained in a doping ratio of x = 0.05–0.15 in Li3+xV1?xSixO4 with addition of excess Li source in synthesis design. The doping mechanism and the energy changes are investigated in detail by using the first principle calculations, it reveals that an interstitial Li+ is formed with doping of Si4+ in Li3VO4 to balance the system charge. When served as an anode, the Si‐doped γ‐Li3VO4 shows much smoothed Li+ insertion/extraction and enhanced cycle stability with only a single pair of redox peaks, which behaves much different with the complex multicouples of redox peaks in typical β‐Li3VO4. These changes in electrochemical performances implies that γ‐Li3VO4 can effectively accommodate Li+ in an easier and more facile way and relieved structure stress during the charge/discharge process.  相似文献   

19.
Pseudocapacitive materials have been highlighted as promising electrode materials to overcome slow diffusion‐limited redox mechanism in active materials, which impedes fast charging/discharging in energy storage devices. However, previously reported pseudocapacitive properties have been rarely used in lithium‐ion batteries (LIBs) and evaluation methods have been limited to those focused on thin‐film‐type electrodes. Hence, a nanocage‐shaped silicon–carbon composite anode is proposed with excellent pseudocapacitive qualities for LIB applications. This composite anode exhibits a superior rate capability compared to other Si‐based anodes, including commercial silicon nanoparticles, because of the higher pseudocapacitive contribution coming from ultrathin Si layer. Furthermore, unprecedent 3D pore design in cage shape, which prevents the particle scale expansion even after full lithiation demonstrates the high cycling stability. This concept can potentially be used to realize high‐power and high‐energy LIB anode materials.  相似文献   

20.
Ni‐rich Li[NixCoyMn1?x?y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g?1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g?1 at 3.0–4.3 V) and rate capability (152.7 mAh g?1 at a current density of 1000 mA g?1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号