共查询到20条相似文献,搜索用时 15 毫秒
1.
We used multiple approaches to investigate the coordination of trans and medial Rab proteins in the regulation of intra‐Golgi retrograde trafficking. We reasoned that medially located Rab33b might act downstream of the trans Golgi Rab, Rab6, in regulating intra‐Golgi retrograde trafficking. We found that knockdown of Rab33b, like Rab6, suppressed conserved oligomeric Golgi (COG) complex‐ or Zeste White 10 (ZW10)‐depletion induced disruption of the Golgi ribbon in HeLa cells. Moreover, efficient GTP‐restricted Rab6 induced relocation of Golgi enzymes to the endoplasmic reticulum (ER) was Rab33b‐dependent, but not vice versa, suggesting that the two Rabs act sequentially in an intra‐Golgi Rab cascade. In support of this hypothesis, we found that overexpression of GTP‐Rab33b induced the dissociation of Rab6 from Golgi membranes in vivo. In addition, the transport of Shiga‐like toxin B fragment (SLTB) from the trans to cis Golgi and ER required Rab33b. Surprisingly, depletion of Rab33b had little, if any, immediate effect on cell growth and multiplication. Furthermore, anterograde trafficking of tsO45G protein through the Golgi apparatus was normal. We suggest that the Rab33b/Rab6 regulated intra‐Golgi retrograde trafficking pathway must coexist with other Golgi trafficking pathways. In conclusion, we provide the first evidence that Rab33b and Rab6 act to coordinate a major intra‐Golgi retrograde trafficking pathway. This coordination may have parallels with Rab conversion/cascade events that regulate endosome, phagosome and exocytic processes. 相似文献
2.
Arasaki K Uemura T Tani K Tagaya M 《Biochemical and biophysical research communications》2007,359(3):811-816
ZW10 participates in the termination of the spindle checkpoint during mitosis by interacting with dynamitin, a subunit of the dynein accessory complex dynactin. We previously showed that ZW10 is attached to the endoplasmic reticulum through RINT-1 in interphase HeLa cells and involved in membrane transport between the endoplasmic reticulum and Golgi. Although a recent study demonstrated that ZW10 is localized in the Golgi in COS7 cells, the mechanism that regulates ZW10 localization remains unknown. In this study we showed a correlation between the Golgi localization of ZW10 and the centrosomal accumulation of dynactin. The amounts of ZW10 associated with dynactin were larger in cells where ZW10 was present in the Golgi than those where ZW10 was not in the Golgi. The targeting of ZW10 to the perinuclear Golgi region was found to depend on the perinuclear accumulation of dynactin, suggesting that dynactin regulates ZW10 localization. 相似文献
3.
Sohda M Misumi Y Yoshimura S Nakamura N Fusano T Ogata S Sakisaka S Ikehara Y 《Traffic (Copenhagen, Denmark)》2007,8(3):270-284
The vesicle-tethering protein p115 functions in endoplasmic reticulum-Golgi trafficking. We explored the function of homologous region 2 (HR2) of the p115 head domain that is highly homologous with the yeast counterpart, Uso1p. By expression of p115 mutants in p115 knockdown (KD) cells, we found that deletion of HR2 caused an irregular assembly of the Golgi, which consisted of a cluster of mini-stacked Golgi fragments, and gathered around microtubule-organizing center in a microtubule-dependent manner. Protein interaction analyses revealed that p115 HR2 interacted with Cog2, a subunit of the conserved oligomeric Golgi (COG) complex that is known another putative cis-Golgi vesicle-tethering factor. The interaction between p115 and Cog2 was found to be essential for Golgi ribbon reformation after the disruption of the ribbon by p115 KD or brefeldin A treatment and recovery by re-expression of p115 or drug wash out, respectively. The interaction occurred only in interphase cells and not in mitotic cells. These results strongly suggested that p115 plays an important role in the biogenesis and maintenance of the Golgi by interacting with the COG complex on the cis-Golgi in vesicular trafficking. 相似文献
4.
Utskarpen A Slagsvold HH Iversen TG Wälchli S Sandvig K 《Traffic (Copenhagen, Denmark)》2006,7(6):663-672
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus. 相似文献
5.
Miwa Sohda Yoshio Misumi Akitsugu Yamamoto Nobuhiro Nakamura Shigenori Ogata Shotaro Sakisaka Shinichi Hirose Yukio Ikehara Kimimitsu Oda 《Traffic (Copenhagen, Denmark)》2010,11(12):1552-1566
The coiled‐coil Golgi membrane protein golgin‐84 functions as a tethering factor for coat protein I (COPI) vesicles. Protein interaction analyses have revealed that golgin‐84 interacts with another tether, the conserved oligomeric Golgi (COG) complex, through its subunit Cog7. Therefore, we explored the function of golgin‐84 as the tether for COPI vesicles of intra‐Golgi retrograde traffic. First, glycosylic maturation of both plasma membrane (CD44) and lysosomal (lamp1) glycoproteins was distorted in golgin‐84 knockdown (KD) cells. The depletion of golgin‐84 caused fragmentation of the Golgi with the mislocalization of Golgi resident proteins, resulting in the accumulation of vesicles carrying intra‐Golgi soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) and cis‐Golgi membrane protein GPP130. Similar observations were obtained by diminution of the COG complex, suggesting a strong correlation between the two tethers. Indeed, COG complex‐dependent (CCD) vesicles that accumulate in Cog3 or Cog7 KD cells carried golgin‐84. Surprisingly, the interaction between golgin‐84 and another candidate tethering partner CASP (CDP/cut alternatively spliced product) decreased in Cog3 KD cells. These results indicate that golgin‐84 on COPI vesicles interact with the COG complex before SNARE assembly, suggesting that the interaction of golgin‐84 with COG plays an important role in the tethering process of intra‐Golgi retrograde vesicle traffic. 相似文献
6.
Tetyana Kudlyk Rose Willett Irina D. Pokrovskaya Vladimir Lupashin 《Traffic (Copenhagen, Denmark)》2013,14(2):194-204
Vesicular tethers and SNAREs are two key protein components that govern docking and fusion of intracellular membrane carriers in eukaryotic cells. The conserved oligomeric Golgi (COG) complex has been specifically implicated in the tethering of retrograde intra‐Golgi vesicles. Using yeast two‐hybrid and co‐immunoprecipitation approaches, we show that the COG6 subunit of the COG complex is capable of interacting with a subset of Golgi SNAREs, namely STX5, STX6, GS27 and SNAP29. Interaction with SNAREs is accomplished via the universal SNARE‐binding motif of COG6. Overexpression of COG6, or its depletion from cells, disrupts the integrity of the Golgi complex. Importantly, COG6 protein lacking the SNARE‐binding domain is deficient in Golgi binding, and is not capable of inducing Golgi complex fragmentation when overexpressed. These results indicate that COG6–SNARE interactions are important for both COG6 localization and Golgi integrity . 相似文献
7.
Mesa R Magadán J Barbieri A López C Stahl PD Mayorga LS 《Experimental cell research》2005,304(2):339-353
The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN). 相似文献
8.
Adil R Sarhan Rachel Gomez Pawel Lis Melanie Wightman Terina N Martinez Francesca Tonelli Suzanne R Pfeffer Dario R Alessi 《The EMBO journal》2018,37(1):1-18
Parkinson's disease predisposing LRRK2 kinase phosphorylates a group of Rab GTPase proteins including Rab29, within the effector‐binding switch II motif. Previous work indicated that Rab29, located within the PARK16 locus mutated in Parkinson's patients, operates in a common pathway with LRRK2. Here, we show that Rab29 recruits LRRK2 to the trans‐Golgi network and greatly stimulates its kinase activity. Pathogenic LRRK2 R1441G/C and Y1699C mutants that promote GTP binding are more readily recruited to the Golgi and activated by Rab29 than wild‐type LRRK2. We identify conserved residues within the LRRK2 ankyrin domain that are required for Rab29‐mediated Golgi recruitment and kinase activation. Consistent with these findings, knockout of Rab29 in A549 cells reduces endogenous LRRK2‐mediated phosphorylation of Rab10. We show that mutations that prevent LRRK2 from interacting with either Rab29 or GTP strikingly inhibit phosphorylation of a cluster of highly studied biomarker phosphorylation sites (Ser910, Ser935, Ser955 and Ser973). Our data reveal that Rab29 is a master regulator of LRRK2, controlling its activation, localization, and potentially biomarker phosphorylation. 相似文献
9.
Del Nery E Miserey-Lenkei S Falguières T Nizak C Johannes L Perez F Goud B 《Traffic (Copenhagen, Denmark)》2006,7(4):394-407
The closely related Rab6 isoforms, Rab6A and Rab6A', have been shown to regulate vesicular trafficking within the Golgi and post-Golgi compartments, but studies using dominant active or negative mutant suggested conflicting models. Here, we report that reduction in the expression of Rab6 isoform using specific small interfering RNA reveals noticeable differences in the Rab6A and Rab6A' biological functions. Surprisingly, Rab6A seems to be largely dispensable in membrane trafficking events, whereas knocking down the expression of Rab6A' hampers the intracellular transport of the retrograde cargo marker, the Shiga Toxin B-subunit along the endocytic pathway, and causes defects in Golgi- associated protein recycling through the endoplasmic reticulum. We also showed that Rab6A' is required for cell cycle progression through mitosis and identify Ile(62) as a key residue for uncoupling Rab6A' functions in mitosis and retrograde trafficking. Thus, our work shows that Rab6A and Rab6A' perform different functions within the cell and suggests a novel role for Rab6A' as the major Rab6 isoform regulating previously described Rab6-dependent transport pathways. 相似文献
10.
11.
Helen L. Johns Claudia Gonzalez‐Lopez Charlotte L. Sayers Michael Hollinshead Gillian Elliott 《Traffic (Copenhagen, Denmark)》2014,15(2):157-178
Herpes simplex virus 1 (HSV1) is an enveloped virus that uses undefined transport carriers for trafficking of its glycoproteins to envelopment sites. Screening of an siRNA library against 60 Rab GTPases revealed Rab6 as the principal Rab involved in HSV1 infection, with its depletion preventing Golgi‐to‐plasma membrane transport of HSV1 glycoproteins in a pathway used by several integral membrane proteins but not the luminal secreted protein Gaussia luciferase. Knockdown of Rab6 reduced virus yield to 1% and inhibited capsid envelopment, revealing glycoprotein exocytosis as a prerequisite for morphogenesis. Rab6‐dependent virus production did not require the effectors myosin‐II, bicaudal‐D, dynactin‐1 or rabkinesin‐6, but was facilitated by ERC1, a factor involved in linking microtubules to the cell cortex. Tubulation and exocytosis of Rab6‐positive, glycoprotein‐containing membranes from the Golgi was substantially augmented by infection, resulting in enhanced and targeted delivery to cell tips. This reveals HSV1 morphogenesis as one of the first biological processes shown to be dependent on the exocytic activity of Rab6. 相似文献
12.
Araripe JR Cunha e Silva NL Leal ST de Souza W Rondinelli E 《Biochemical and biophysical research communications》2004,321(2):397-402
In mammalian cells, the Rab7 protein is a key element of late endocytic membrane traffic. Several results suggest that it is involved in the transport from early to late endosome or from late endosome to lysosome. We have previously characterized a Rab7 gene homologue (TcRAB7) in Trypanosoma cruzi. Now, using an affinity-purified antibody specific to TcRAB7 protein we have determined that it is localized at the Golgi apparatus of the parasite. Our results indicate that the T. cruzi Rab7 homologue may function in a different route than its counterparts in mammalian cells. 相似文献
13.
Gabrielle R Neises Philip G Woodman Terry D Butters Richard L Ornberg Frances M Platt 《Biology of the cell / under the auspices of the European Cell Biology Organization》1997,89(2):123-131
The imino sugar N-butyldeoxynojirimycin inhibits the N-linked oligosaccharide processing enzymes α-glucosidases I and II, and the ceramide specific glucosyltransferase which catalyses the first step in glucosphingolipid biosynthesis. We have studied the effects of this compound on the ultrastructure of HL-60 cells to identify novel activities of this compound. Treatment of HL-60 cells with this imino sugar results in several morphological changes within the cell, none of which result in cytotoxicity. The plasma membrane stains heavily with potassium ferrocyanide within 30 min following addition of the compound to the medium, and there is then a time dependent involvement of all other intracellular membranes. Secretory granules become enlarged and lose their dense core morphology and appear either empty and vacuolated or have low density contents. However, the most striking effect of NB-DNJ treatment is on the Golgi apparatus. The Golgi exhibits a time-dependent change from typical Golgi morphology to a structure almost completely devoid of cisternae and consisting predominantly of vesicles. All the observed changes are fully reversible on withdrawal of the compound. 相似文献
14.
Ariane Droscher 《Glycoconjugate journal》1998,15(8):733-736
1998 is the year of the centenary of the discovery of the Golgi apparatus. This event is considered in its historical context: the first cell theory of 1838–1839, the first polemics in cytology and the research on the cell organelles at the turn of the century. The first approaches to clarify the physiological significance of the apparatus is traced from Golgi (1909) to Bowen (1929). 相似文献
15.
Farhana Taher Sumya Irina D. Pokrovskaya Zinia D'Souza Vladimir V. Lupashin 《Traffic (Copenhagen, Denmark)》2023,24(2):52-75
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats—COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells. 相似文献
16.
Orly Laufman Hudson H. Freeze Wanjin Hong Sima Lev 《Traffic (Copenhagen, Denmark)》2013,14(10):1065-1077
Multiple mutations in different subunits of the tethering complex Conserved Oligomeric Golgi (COG) have been identified as a cause for Congenital Disorders of Glycosylation (CDG) in humans. Yet, the mechanisms by which COG mutations induce the pleiotropic CDG defects have not been fully defined. By detailed analysis of Cog8 deficiency in either HeLa cells or CDG‐derived fibroblasts, we show that Cog8 is required for the assembly of both the COG complex and the Golgi Stx5‐GS28‐Ykt6‐GS15 and Stx6‐Stx16‐Vti1a‐VAMP4 SNARE complexes. The assembly of these SNARE complexes is also impaired in cells derived from a Cog7‐deficient CDG patient. Likewise, the integrity of the COG complex is also impaired in Cog1‐, Cog4‐ and Cog6‐depleted cells. Significantly, deficiency of Cog1, Cog4, Cog6 or Cog8 distinctly influences the production of COG subcomplexes and their Golgi targeting. These results shed light on the structural organization of the COG complex and its subcellular localization, and suggest that its integrity is required for both tethering of transport vesicles to the Golgi apparatus and the assembly of Golgi SNARE complexes. We propose that these two key functions are generally and mechanistically impaired in COG‐associated CDG patients, thereby exerting severe pleiotropic defects. 相似文献
17.
18.
Defects in conserved oligomeric Golgi (COG) complex result in multiple deficiencies in protein glycosylation. On the other hand, acute knock-down (KD) of Cog3p (COG3 KD) causes accumulation of intra-Golgi COG complex-dependent (CCD) vesicles. Here, we analyzed cellular phenotypes at different stages of COG3 KD to uncover the molecular link between COG function and glycosylation disorders. For the first time, we demonstrated that medial-Golgi enzymes are transiently relocated into CCD vesicles in COG3 KD cells. As a result, Golgi modifications of both plasma membrane (CD44) and lysosomal (Lamp2) glycoproteins are distorted. Localization of these proteins is not altered, indicating that the COG complex is not required for anterograde trafficking and accurate sorting. COG7 KD and double COG3/COG7 KD caused similar defects with respect to both Golgi traffic and glycosylation, suggesting that the entire COG complex orchestrates recycling of medial-Golgi-resident proteins. COG complex-dependent docking of isolated CCD vesicles was reconstituted in vitro, supporting their role as functional trafficking intermediates. Altogether, the data suggest that constantly cycling medial-Golgi enzymes are transported from distal compartments in CCD vesicles. Dysfunction of COG complex leads to separation of glycosyltransferases from anterograde cargo molecules passing along secretory pathway, thus affecting normal protein glycosylation. 相似文献
19.
Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells 总被引:1,自引:0,他引:1
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the trans-Golgi via a transport process that requires the Rab9 GTPase and the cargo adaptor TIP47. We have generated green fluorescent protein variants of Rab9 and determined their localization in cultured cells. Rab9 is localized primarily in late endosomes and is readily distinguished from the trans-Golgi marker galactosyltransferase. Coexpression of fluorescent Rab9 and Rab7 revealed that these two late endosome Rabs occupy distinct domains within late endosome membranes. Cation-independent mannose 6-phosphate receptors are enriched in the Rab9 domain relative to the Rab7 domain. TIP47 is likely to be present in this domain because it colocalizes with the receptors in fixed cells, and a TIP47 mutant disrupted endosome morphology and sequestered MPRs intracellularly. Rab9 is present on endosomes that display bidirectional microtubule-dependent motility. Rab9-positive transport vesicles fuse with the trans-Golgi network as followed by video microscopy of live cells. These data provide the first indication that Rab9-mediated endosome to trans-Golgi transport can use a vesicle (rather than a tubular) intermediate. Our data suggest that Rab9 remains vesicle associated until docking with the Golgi complex and is rapidly removed concomitant with or just after membrane fusion. 相似文献
20.
In an electron microscopy study of abnormal spermatogenesis in mice, we have found that two discrete haploid nuclei may be located in a single spermatid cytoplasm after the second meiotic division. The spermatid continues to differentiate and forms a binucleate spermatozoon with both nuclei separately packaged within the sperm head. The Golgi apparatus of the double spermatid forms a single proacrosome that attaches to both nuclei. Apparently, one acrosomal structure differentiates to cover and compartmentalize the two haploid nuclei within the sperm head. Chromatin condensation appears normal. The head morphology and number of flagella vary in mature spermatozoa produced by this process. This work demonstrates one pathway by which polyploid spermatids continue to differentiate to spermatozoa after failure of cytoplasmic division or possibly cellular fusion. 相似文献