首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Binding of tumor necrosis factor-alpha (TNF-alpha) to its receptor activates IKK complex, which leads to inducement of NF-kappaB activity. Here we report that activation of Mpl ligand is also linked to IKK and NF-kappaB activity. Mpl ligand, also known as thrombopoietin (TPO) or megakaryocyte growth and development factor (MGDF), induces megakaryocyte differentiation and inhibition of mitotic proliferation, followed by induction of polyploidization and fragmentation into platelets. The latter process is often observed in megakaryocytes undergoing apoptosis. Treatment of a Mpl ligand-responding megakaryocytic cell line with this cytokine led to an immediate, transient increase in IKK activity followed by a profound decrease in this kinase activity over time. This decrease was not due to an effect on the levels of the IKK regulatory components IKKalpha and IKKbeta. Proliferating megakaryocytes displayed a constitutive DNA-binding activity of NF-kappaB p50 homodimers and of NF-kappaB p50-p65 heterodimers. As expected, reduced IKK activity in Mpl ligand-treated cells was associated with a significant reduction in NF-kappaB DNA binding activity and in the activity of a NF-kappaB-dependent promoter. Our study is thus the first to identify a constitutive NF-kappaB activity in proliferating megakaryocytes as well as to describe a link between Mpl receptor signaling and IKK and NF-kappaB activities. Since a variety of proliferation-promoting genes and anti-apoptotic mechanisms are activated by NF-kappaB, retaining its low levels would be one potential mechanism by which inhibition of mitotic proliferation is maintained and apoptosis is promoted during late megakaryopoiesis.  相似文献   

2.
The thrombopoietin receptor is a crucial element in thrombopoietin-initiated signaling pathways, which stimulates the differentiation of normal hematopoietic progenitor cells, the maturation of megakaryocytes, and the generation of platelets. In this study, we identified a novel activating variant of thrombopoietin receptor, termed Mpl-D, in human megakaryoblastic leukemia Dami cells and demonstrated that the binding affinity of the Mpl-D receptor for thrombopoietin is enhanced. Cell cycle analysis revealed that in the presence of thrombopoietin, most Mpl-D expressing NIH3T3 (NIH3T3/Mpl-D) cells were prevalent in G1 phase while the S and G2/M populations were less frequently observed. Unexpectedly, thrombopoietin induced strong and prolonged ERK1/2 signaling in NIH3T3/Mpl-D cells compared with its receptor wild-type expressing NIH3T3 (NIH3T3/Mpl-F) cells. Further analysis of the mRNA levels of cyclin D1/D2 in NIH3T3/Mpl-D cells demonstrated markedly down-regulated expression compared to NIH3T3/Mpl-F cells in the presence of thrombopoietin. Thus, the prolonged activation of ERK1/2 by Mpl-D might lead to G1 cell cycle arrest through a profound reduction of cyclin D1/D2 in order to support cell survival without proliferation. We also provided tertiary structural basis for the Mpl-D and thrombopoietin interaction, which might provide insights into how Mpl-D effectively increases binding to thrombopoietin and significantly contributes to its specific signaling pathway. These results suggest a new paradigm for the regulation of cytokine receptor expression and function through the alternative splicing variant of Mpl in Dami cells, which may play a role in the pathogenesis of megakaryoblastic leukemia.  相似文献   

3.
In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.  相似文献   

4.
目的:探讨S100A6经由巨噬细胞介导的促血管生成作用及机制。方法:(1)用重组蛋白 GST-hS100A6处理巨噬细胞后:①收集上清制备条件培养基(简称A6-Mφ-CM),并用之重悬人脐静脉内皮细胞(HUVEC),用体外血管形成试验检测各处理因素对血管形成的影响;②分别用实时荧光定量PCR和Western blot检测巨噬细胞的M2型标志物CD163及促血管形成因子CCL2、IL-6、VEGFA的mRNA和蛋白质水平,以及JAK2和STAT3的蛋白质及其磷酸化水平;③用Transwell迁移试验检测巨噬细胞迁移能力的变化。(2)使用JAK2抑制剂(XL019)预处理巨噬细胞后再加GST-hS100A6处理,检测S100A6促巨噬细胞迁移作用的变化。以重组蛋白GST为实验对照。 结果:(1)A6-Mφ-CM组的血管分支数和血管分支长度既明显高于GST-Mφ-CM组(P值均小于0.05),也明显高于GST-hS100A6直接处理的HUVEC组(P<0.001,P<0.01),提示S100A6处理后的巨噬细胞具有促进血管形成的作用;(2)GST-hS100A6处理后的巨噬细胞中,CD163、CCL2、IL-6、VEGFA的mRNA和蛋白质水平明显高于GST组(P值均小于0.05),提示S100A6诱导巨噬细胞向促血管表型(pro-angiogenic phenotype)转化;(3)GST-hS100A6处理后,巨噬细胞的迁移数是GST组的1.4倍(P<0.01),提示S100A6具有招募巨噬细胞的作用;(4)GST-hS100A6处理组巨噬细胞的JAK2和STAT3的蛋白质及其磷酸化水平都明显高于GST组(P值均小于0.05),而JAK2抑制剂XL019可部分抑制S100A6促进巨噬细胞迁移的作用(P<0.01),提示S100A6促进巨噬细胞迁移作用机制涉及JAK2/STAT3信号通路的激活。 结论:微环境中的S100A6可通过招募巨噬细胞并进一步诱导其向促血管表型转化,进而促进新生血管形成;其招募巨噬细胞的机制涉及JAK2/STAT3信号通路的激活。  相似文献   

5.
6.
7.
8.
研究新合成的小分子吡啶锰配合物Adpa-Mn(III)([(Adpa)Mn(μ2-O)2Mn(Adpa)]PF6.8H2O(Adpa=bis(2-pyridylmethyl)amino-2-propionic acid))的抗肿瘤作用,初步探索其抗肿瘤的机制。MTT分析Adpa-Mn(III)对细胞活性的影响;活细胞工作站观察GFP荧光标记组蛋白HeLa细胞的细胞核形态,MDC染色以及GFP-LC3质粒转染,探讨细胞死亡的方式;JC-1染色检测线粒体膜电位;Fluo-3-AM和DCFH-DA荧光探针分别检测细胞中Ca^2+和ROS的含量。结果发现,Adpa-Mn(III)剂量依赖性地抑制细胞活性;给药后细胞核出现固缩、片段化;自噬小泡增多,GFP-LC3荧光强度增强;线粒体膜电位下降;细胞内Ca^2+发生超载,ROS含量升高。由此,Adpa-Mn(III)可抑制肿瘤细胞活性,其机制与引起线粒体膜电位下降、增加ROS生成及诱导细胞的死亡有关,同时胞内Ca^2+超载也参与了该作用。这些数据显示,Adpa-Mn(III)具有成为抗肿瘤先导金属配合物的潜在可能性。  相似文献   

9.
10.
11.
12.
Chumakov  M. I.  Dykman  L. A.  Bogatyrev  V. A.  Kurbanova  I. V. 《Microbiology》2001,70(2):232-238
Agrobacterial cells produced straight microfibrils not only when in contact with wheat seedling roots, but also when in contact with each other. After 2 h of incubation, agrobacterial cells were found to form aggregates, in which the cells were in contact either directly or through thick straight microfibrils (bridges) of an unknown composition. The majority of the microfibrils were susceptible to attack by cellulase, although some of them showed resistance to this enzyme. Like the wild-type flagellated agrobacteria, their bald mutants produced long straight microfibrils. The cell surface structures of agrobacteria were examined by labeling them immunocytochemically with colloidal gold–conjugated antibodies against O-specific lipopolysaccharides, Vir proteins, and cellulase. Agrobacterial cells treated with acetosyringone and brought into contact were found to contain subpolar and polar cell surface structures. Antibodies against the VirB2 protein were able to interact with a tuft of thin microfibrils located on one pole of the agrobacterial cell whose virgenes were induced by acetosyringone but were unable to interact with the surface structures of the agrobacterial cells aggregated in liquid medium in the absence of wheat seedlings.  相似文献   

13.
Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides.  相似文献   

14.
《Cell reports》2020,30(4):1101-1116.e5
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

15.
The genus Acinetobacter encompasses multiple nosocomial opportunistic pathogens that are of increasing worldwide relevance because of their ability to survive exposure to various antimicrobial and sterilization agents. Among these, Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are the most frequently isolated in hospitals around the world. Despite the growing incidence of multidrug-resistant Acinetobacter spp., little is known about the factors that contribute to pathogenesis. New strategies for treating and managing infections caused by multidrug-resistant Acinetobacter strains are urgently needed, and this requires a detailed understanding of the pathobiology of these organisms. In recent years, some virulence factors important for Acinetobacter colonization have started to emerge. In this review, we focus on several recently described virulence factors that act at the bacterial surface level, such as the capsule, O-linked protein glycosylation, and adhesins. Furthermore, we describe the current knowledge regarding the type II and type VI secretion systems present in these strains.  相似文献   

16.
When a cell adhered to another cell or substratum via surface proteins is forced to detach, lipid membrane tethers are often extruded from the cell surface before the protein bond dissociates. For example, during the inflammatory reaction leukocytes roll on the surface of activated endothelial cells. The rolling adhesion is mediated by interactions of selectins with their ligands, e.g., P-selectin glycoprotein ligand (PSGL)-1, which extrudes membrane tethers from the surfaces of both leukocytes and endothelial cells. Membrane tether extrusion has been suggested to regulate leukocyte rolling. Here we examine several factors that may affect forces required to initiate membrane tethers, or initial tether force. It was found that initial tether forces were similar regardless of the presence or absence of the cytoplasmic tail of P-selectin and regardless of whether the tethers were extruded via binding to PSGL-1 or Fcγ receptors. Initial tether forces were found to depend on the cell types tested and were greatly reduced by treatment of latrunculin A, which inhibits actin polymerization. These data provide additional insights to the control of membrane tether extrusion, which should be taken into account when cellular functions such as rolling where tether extrusion plays a regulatory role are compared using different cell types expressing the same molecule.  相似文献   

17.
18.
The synthesis of (R)- and (S)-3-(4-hydroxyphenyO-1-methylpropyl-β-D-glucopyranosides has been achieved by two enzymatic steps, namely an oxido-reduction step involving alcohol dehydrogenases from different origin for the preparation of both aglycones in enantiomeric pure form, and a transglycosidation step involving a thermophilic β-glucosidase from the archaeon Sulfolobus solfataricus.  相似文献   

19.
20.
Myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive and negative. The JAK2 V617F is the most common mutation in Philadelphia negative patients and results in a constitutive activation of the JAK/STAT pathway, conferring a proliferative advantage and apoptosis inhibition. Recent studies identified a functional crosstalk between the JAK/STAT and mTOR pathways. The identification of an effective therapy is often difficult, so the availability of new therapeutic approaches might be attractive. Previous studies showed that curcumin, the active principle of the Curcuma longa, can suppress JAK2/STAT pathways in different type of cancer and injuries. In this study, we investigated the anti‐proliferative and pro‐apoptotic effects of curcumin in JAK2 V617F‐mutated cells. HEL cell line and cells from patients JAK2 V617F mutated have been incubated with increasing concentrations of curcumin for different time. Apoptosis and proliferation were evaluated. Subsequently, JAK2/STAT and AKT/mTOR pathways were investigated at both RNA and protein levels. We found that curcumin induces apoptosis and inhibition of proliferation in HEL cells. Furthermore, we showed that curcumin inhibits JAK2/STAT and mTORC1 pathways in JAK2 V617F‐mutated cells. This inhibition suggests that curcumin could represent an alternative strategy to be explored for the treatment of patients with myeloproliferative neoplasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号