首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum (ER) has the ability to maintain the balance between demand for and synthesis of secretory proteins. To ensure protein‐folding homeostasis in the ER, cells invoke signaling pathways known as the unfolded protein response (UPR). To initiate UPR, yeasts largely rely on a conserved sensor, IRE1. In metazoans, there are at least three independent UPR signalling pathways. Some UPR transducers have been identified in plants, but no genetic interaction among them has yet been examined. The Arabidopsis genome encodes two IRE1 sequence homologs, AtIRE1A and AtIRE1B. Here we provide evidence that AtIRE1A and AtIRE1B have overlapping functions that are essential for the plant UPR. A double mutant of AtIRE1A and AtIRE1B, atire1a atire1b, showed reduced ER stress tolerance and a compromised UPR activation phenotype. We have also established that Arabidopsis AGB1, a subunit of the ubiquitous heterotrimeric GTP‐binding protein family, and AtIRE1A/AtIRE1B independently control two essential plant UPR pathways. By demonstrating that atire1a atire1b has a short root phenotype that is enhanced by an agb1 loss‐of‐function mutation, we have identified a role for UPR transducers in organ growth regulation.  相似文献   

2.
The unfolded protein response (UPR) is a signaling network triggered by overload of protein‐folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down‐regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species‐specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER‐localized auxin transporters, including PIN5, we define a long‐neglected biological significance of ER‐based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone‐dependent strategy for coordinating ER function with physiological processes.  相似文献   

3.
Iwata Y  Koizumi N 《Planta》2005,220(5):804-807
When correct folding of protein in the endoplasmic reticulum (ER) is prevented, cells respond to overcome the accumulation of unfolded proteins. This cellular response, which includes the induction of ER chaperones, is called an unfolded protein response (UPR). Although a link between the UPR and apoptosis has been reported in mammalian cells, little is known about this mechanism in plant cells. Asparagine (N)-linked glycosylation of proteins is critical for protein folding in the ER; and tunicamycin, a potent inhibitor of N-linked glycosylation, induces UPR. Growth arrest was observed in cultured tobacco cells treated with tunicamycin. Cell death and induction of Hsr203J, a marker for programmed cell death, were observed in the 24-h period after addition of tunicamycin, following UPR that started within 2 h. These results indicate a strong link between UPR and programmed cell death in plant cells.  相似文献   

4.
Ustilago maydis is a model organism for the study of biotrophic plant–pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.  相似文献   

5.
The Potato virus X (PVX) triple gene block protein 3 (TGBp3), an 8‐kDa membrane binding protein, aids virus movement and induces the unfolded protein response (UPR) during PVX infection. TGBp3 was expressed from the Tobacco mosaic virus (TMV) genome (TMV‐p3), and we noted the up‐regulation of SKP1 and several endoplasmic reticulum (ER)‐resident chaperones, including the ER luminal binding protein (BiP), protein disulphide isomerase (PDI), calreticulin (CRT) and calmodulin (CAM). Local lesions were seen on leaves inoculated with TMV‐p3, but not TMV or PVX. Such lesions were the result of TGBp3‐elicited programmed cell death (PCD), as shown by an increase in reactive oxygen species, DNA fragmentation and induction of SKP1 expression. UPR‐related gene expression occurred within 8 h of TMV‐p3 inoculation and declined before the onset of PCD. TGBp3‐mediated cell death was suppressed in plants that overexpressed BiP, indicating that UPR induction by TGBp3 is a pro‐survival mechanism. Anti‐apoptotic genes Bcl‐xl, CED‐9 and Op‐IAP were expressed in transgenic plants and suppressed N gene‐mediated resistance to TMV, but failed to alleviate TGBp3‐induced PCD. However, TGBp3‐mediated cell death was reduced in SKP1‐silenced Nicotiana benthamiana plants. The combined data suggest that TGBp3 triggers the UPR and elicits PCD in plants.  相似文献   

6.
7.
内质网应激激活的未折叠蛋白反应(Unfolded protein response,UPR)途径在酿酒酵母和哺乳动物细胞中是非常保守的。内质网(Endoplasmic reticulum,ER)是蛋白质合成、折叠和修饰的细胞器,也是贮存钙的主要场所之一。酵母细胞内质网钙平衡与UPR的作用是相互的;两个MAPK途径——HOG途径和CWI途径都是细胞应答内质网应激压力时生存所必需的;重金属镉离子能够激活UPR途径,它通过激活钙离子通道Cch1/Mid1进入细胞影响钙离子的功能。本文结合最新研究进展对酿酒酵母细胞中的两个MAPK途径、镉离子和钙离子稳态与内质网应激激活的UPR途径之间相互关系进行综述。  相似文献   

8.
9.
The gene pdi1 encoding protein disulphide isomerase was isolated from the filamentous fungus Trichoderma reesei by degenerate PCR based on a consensus PDI active-site sequence. It was shown that the Trichoderma pdi1 cDNA is able to complement a yeast mutant with a disrupted PDI1 gene. The putative T. reesei PD1I protein has a predicted 20-amino acid N-terminal signal sequence and the C-terminal fungal consensus ER retention signal HDEL. The mature protein shows strong conservation relative to other fungal protein disulphide isomerases. The T. reesei pdi1 promoter has two possible unfolded protein response (UPR) elements and it was shown by treatments with dithiothreitol and tunicamycin that the gene is under the control of the UPR pathway. Expression of a heterologous protein, an IgG antibody Fab fragment, in Trichoderma increases pdi1 expression, probably by inducing the UPR. The level of T. reesei pdi1 mRNA is also regulated by the carbon source, being lowest in glucose-containing media and highest on carbon sources that induce the genes encoding extracellular enzymes. The mechanism of this regulation was studied by examining pdi1 mRNA levels under conditions where the extracellular enzymes are induced by sophorose, as well as in the strain RutC-30, which is mutant for the glucose repressor gene cre1. The results suggest that neither sophorose induction nor glucose repression by the CREI protein affect the pdi1 promoter directly. Received: 4 May 1998 / Accepted: 23 April 1999  相似文献   

10.
11.
12.
13.
14.
15.
Singlet oxygen (1O2) is a by‐product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1O2‐overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1O2 signalling pathway involves the endoplasmic reticulum (ER)‐mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR‐inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light‐induced cell death. Conversely, light acclimation of ch1 to 1O2 stress put a limitation in the high light‐induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1O2 induces the ER‐mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1O2, and a strong activation of the whole UPR is associated with cell death.  相似文献   

16.
17.
18.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

19.
The unfolded protein response (UPR) plays important roles in plant virus infection. Our previous study has proved that rice stripe virus (RSV) infection elicits host UPR. However, the mechanism on how the UPR is triggered upon RSV infection remains obscure. Here, we show that the bZIP17/28 branch of the UPR signalling pathway is activated upon RSV infection in Nicotiana benthamiana. We found that membrane-associated proteins NSvc2 and NSvc4 encoded by RSV are responsible for the activation of the bZIP17/28 branch. Ectopic expression of NSvc2 or NSvc4 in plant leaves induced the proteolytic processing of NbbZIP17/28 and up-regulated the expression of UPR-related genes. Silencing NbbZIP17/28 significantly inhibited RSV infection. We show that RSV can specifically elicit the UPR through the bZIP17/28 branch, thus promoting virus infection of N. benthamiana plants.  相似文献   

20.
The unfolded protein response (UPR) is a regulatory system to maintain the homeostasis of ER functions. Here we report a comparison of express levels of UPR relevant genes in Aspergillus oryzae between solid-state and submerged cultivation. The results were that up-regulation of the UPR mechanism in solid-state culture was higher than in submerged culture (heat-shock or non-stress conditions). This might have been a result of changing culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号