首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A chitinase activity was detected in fractions of xylem sap collected from the cut surface of cucumber stems. A 28-kDa acidic protein was purified from the active fractions and its N-terminal amino acids sequence was found to be identical to that of a chitinase gene. Cucumber roots produce and secrete an acidic chitinase, one of the PR proteins, into xylem sap and deliver it to aboveground organs.  相似文献   

2.
Jia W  Davies WJ 《Plant physiology》2007,143(1):68-77
The confocal microscope was used to determine the pH of the leaf apoplast and the pH of microvolumes of xylem sap. We quantified variation in leaf apoplast and sap pH in relation to changes in edaphic and atmospheric conditions that impacted on stomatal sensitivity to a root-sourced abscisic acid signal. Several plant species showed significant changes in the pH of both xylem sap and the apoplast of the shoot in response to environmental perturbation. Xylem sap leaving the root was generally more acidic than sap in the midrib and the apoplast of the leaf. Increasing the transpiration rate of both intact plants and detached plant parts resulted in more acidic leaf apoplast pHs. Experiments with inhibitors suggested that protons are removed from xylem sap as it moves up the plant, thereby alkalinizing the sap. The more rapid the transpiration rate and the shorter the time that the sap resided in the xylem/apoplastic pathway, the smaller the impact of proton removal on sap pH. Sap pH of sunflower (Helianthus annuus) and Commelina communis did not change significantly as soil dried, while pH of tomato (Lycopersicon esculentum) sap increased as water availability in the soil declined. Increasing the availability of nitrate to roots also significantly alkalinized the xylem sap of tomato plants. This nitrogen treatment had the effect of enhancing the sensitivity of the stomatal response to soil drying. These responses were interpreted as an effect of nitrate addition on sap pH and closure of stomata via an abscisic acid-based mechanism.  相似文献   

3.
The effect of differences in applied pressure and time of sampling on pH values of xylem sap collected using the leaf pressurization technique was examined in two grapevine varieties originating from contrasting habitats (Vitis vinifera L., cvs. Sabatiano and Mavrodafni) after subjecting them to drought. Three fractions of xylem sap exudates were collected from each leaf according to differences in applied pressure; fractions (I), (II) and (III) corresponding to 1 MPa, 2 MPa and 2.5 MPa pressure, respectively. The pH values in fraction (I) were significantly lower than those in fractions (II) and (III). The sap pH values in fraction (III) seemed to better correspond to changes in leaf apoplastic pH. The time of sampling was found to strongly influence xylem pH values. In particular, a positive relationship between predawn xylem pH values and soil drying was observed. Conversely, xylem pH values measured later during the day (i.e. at 8:00, 9:00 and 10:00 am) were not significantly affected by the reduction in soil water availability in both varieties. It is suggested that the most suitable period for sap sampling in order to better discriminate drought effects on xylem sap pH is at predawn. Furthermore, there were significant differences in pH values as well as in the sensitivity of stomatal conductance to pH between the two varieties. These differences might be related to strategy differences between grapevine varieties for adaptation to drought.  相似文献   

4.
Identification of the silicon form in xylem sap of rice (Oryza sativa L.)   总被引:3,自引:0,他引:3  
Rice (Oryza sativa L.) is a typical silicon (Si)-accumulating plant, but the mechanism responsible for the translocation from the root to the shoot is poorly understood. In this study, the form of Si in xylem sap was identified by (29)Si-nuclear magnetic resonance (NMR) spectroscopy. In rice (cv. Oochikara) cultured in a monosilicic acid solution containing 0.5 mM Si, the Si concentration in the xylem reached 6 mM within 30 min. In the (29)Si-NMR spectra of the xylem sap, only one signal was observed at a chemical shift of -72.6 ppm, which is consistent with that of monosilicic acid. A (1)H-NMR study of xylem sap did not show any significant difference between the wild-type rice and mutant rice defective in Si uptake, and the components of the xylem sap were not affected by the Si supply. The Si concentration in the xylem sap in vitro decreased from an initial 18 mM to 2.6 mM with time. Addition of xylem sap to a solution containing 8 mM Si did not prevent the polymerization of silicic acid. All these results indicate that Si is translocated in the form of monosilicic acid through the xylem and that the concentration of monosilicic acid is high in the xylem only transiently.  相似文献   

5.
Nickel speciation was studied in the xylem sap of Alyssum serpyllifolium ssp. lusitanicum, a Ni-hyperaccumulator endemic to the serpentine soils of northeast Portugal. The xylem sap was collected from plants growing in its native habitat and characterized in terms of carboxylic and amino acids content. The speciation of nickel was studied in model and real solutions of xylem sap by voltammetric titrations using Square Wave Voltammetry (SWV). The results showed that Ni transport in the xylem sap occurs mainly as a free hydrated cation (about 70%) and complexed with carboxylic acids, mainly citric acid (18%). Altogether, oxalic acid, malic acid, malonic acid and aspartic acid complexed less than 13% of total Ni. A negligible amount bounded to the amino acids, like glutamic acid and glutamine (<1%). Histidine did not play a role in Ni translocation in the xylem sap of A. serpyllifolium under field conditions. Amino acids are one of the main forms of N transport in the xylem sap, and under field conditions, N is usually a limited nutrient. We hypothesize that the translocation of Ni in the xylem sap as a free ion or chelated with carboxylic acids is ‘cheaper’ in terms of N resources.  相似文献   

6.
Conservation of element concentration in xylem sap of red spruce   总被引:4,自引:0,他引:4  
We investigated the chemistry of xylem sap as a marker of red spruce metabolism and soil chemistry at three locations in northern New England. A Scholander pressure chamber was used to extract xylem sap from roots and branches cut from mature trees in early June and September. Root sap contained significantly greater concentrations of K, Ca, Mg, Mn, and Al than branch sap. Sap collected in June contained a signficantly greater concentration of Mn than sap collected in September. Sap concentration was related to forest location for N and Mn. Variations in concentrations of N and K were significantly related to the interaction of tree organ and month of collection. Variations in concentrations of P, Cu, Zn, and Fe were not attributable to tree organ, month of collection, or forest location. Patterns of element concentration in xylem sap compared to previously published data on soil solution chemistry indicated a high degree of homeostatic control of xylem sap chemistry. This control likely represents a significant allocation of resources within the tree energy budget.  相似文献   

7.
FERGUSON  A. R. 《Annals of botany》1980,46(6):791-801
Large differences in composition were found between xylem sapcollected from Actinidia chinensis (Chinese gooseberry or kiwifruit) as bleeding sap and sap collected by vacuum extraction.A comparison of saps collected by the two methods has littlemeaning, however, unless the position on the plant from whichsap was collected and the prior treatment of the plant are specified.Furthermore the composition of bleeding sap changes rapidlywith time, probably because of marked gradients in concentrationof individual solutes in the xylem sap from the base to thetop of the plant. Contamination of vacuum-extracted sap by cellularcontents was shown to be insignificant. Sap collected as bleeding sap and by vacuum extraction are ofsomewhat different origins. It would be difficult to predictthe composition of bleeding sap simply from a knowledge of vacuum-extractedsap: it may be similarly unwise to predict the composition ofthe transpiration stream from that of vacuum extracted sap. Actinidia chinensis, kiwi fruit, Chinese gooseberry, xylem sap, bleeding sap, vacuum-extraction  相似文献   

8.
  • Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known.
  • We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non‐structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period.
  • The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations.
  • Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed.
  相似文献   

9.
Transport of nitrogen in the xylem of soybean plants   总被引:54,自引:37,他引:17       下载免费PDF全文
Experiments were conducted to characterize the distribution of N compounds in the xylem sap of nodulated and nonnodulated soybean plants through development and to determine the effects of exogenous N on the distribution of N compounds in the xylem. Xylem sap was collected from nodulated and nonnodulated greenhouse-grown soybean plants (Glycine max [L.] Merr. “Ransom”) from the vegetative phase to the pod-filling phase. The sum of the nitrogen in the amino acid, nitrate, ureide (allantoic acid and allantoin), and ammonium fractions of the sap from both types of plants agreed closely with total N as assayed by a Kjeldahl technique. Sap from nodulated plants supplied with N-free nutrient solution contained seasonal averages of 78 and 20% of the total N as ureide-N and amino acid-N, respectively. Sap from nonnodulated plants supplied with a 20 millimolar KNO3 nutrient solution contained seasonal averages of 6, 36, and 58% of total N as ureide-N, amino acid-N, and nitrate-N, respectively. Allantoic acid was the predominant ureide in the xylem sap and asparagine was the predominant amino acid. When well nodulated plants were supplied with 20 millimolar KNO3, beginning at 65 days, C2H2 reduction (N2 fixation) decreased relative to nontreated plants and there was a concomitant decrease in the ureide content of the sap. A positive correlation (r = 0.89) was found between the ureide levels in xylem sap and nodule dry weights when either exogenous nitrate-N or urea-N was supplied at 10 and 20 millimolar concentrations to inoculated plants. The results demonstrate that ureides play a dominant role in N transport in nodulated soybeans and that the synthesis of ureides is largely dependent upon nodulation and N2 fixation.  相似文献   

10.
Many different techniques have been used for xylem sap collection, but few direct comparisons of techniques have been conducted and few comparisons have been based on comprehensive analyses of xylem sap. Moreover, the suitability of extraction techniques for use on plants grown under water-stress conditions has not been addressed. Xylem sap was extracted from both well-watered and water-stressed Zea mays plants using three different techniques. The main aim was to determine how the extraction method altered the correlations between sap constituents and stomatal conductance in order to determine which relationships change with extraction technique. A 'root pressure' technique was the simplest method of extracting large volumes of sap, but the low sap delivery rates altered the composition of sap. Two pressurization techniques that varied in the position from which sap was collected were tested. The pressurization techniques allowed for the control of delivery rates that influence sap constituent concentrations. The position from which xylem sap was collected on the plant was also found to be important. All three techniques produced consistent correlations between ABA and chloride delivery rates and changes in stomatal conductance, suggesting that each technique could be applied to identify certain putative xylem-borne signals.  相似文献   

11.
In the present field study we analysed the seasonal pattern of carbohydrate composition and contents in the xylem sap of Viscum album and the xylem sap of a deciduous ( Populus × euramericana ) and a coniferous ( Abies alba ) host tree species. The results were compared with the soluble carbohydrate composition and contents of mistletoe tissues. On both hosts significant amounts of glucose, fructose, and sucrose were found in the xylem sap of Viscum throughout the seasons. The general seasonal pattern of sugar contents, i.e. high concentrations in spring and lower concentrations in other seasons on Populus , and intermediate concentrations throughout the year on Abies , largely reflected the xylem sap carbohydrate composition and contents of the respective host. These observations provide indirect evidence for carbohydrate flux from the xylem sap of the host into the mistletoe. However, in both hosts xylem sap seems to be deviated into the mistletoe without specific control of carbohydrate flux. Differences observed between the seasonal pattern of xylem sap carbohydrate concentrations in Viscum on Populus and Abies may originate from the different time of leaf development of these species. A clear-cut seasonal pattern of soluble carbohydrates was not observed in the leaves of Viscum on both hosts. Still soluble carbohydrates seem to be reallocated from the senescing to the newly developed leaves of Viscum indicating that the seasonal requirement of carbohydrate for growth and development can only completely be met by carbohydrate acquisition from the host and their own photosynthesis.  相似文献   

12.
To elucidate the physiological functions of the substances in xylem sap, we analyzed the biological activities of xylem sap from squash (Cucurbita maxima Duch.) root using tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cell protoplasts. When BY-2 cell protoplasts were cultivated with the total substance of squash xylem sap, the protoplasts elongated remarkably, and cell division was inhibited. Although trans-zeatin riboside (ZR), the most abundant cytokinin in squash xylem sap, had a concentration-dependent effect similar to that of total squash xylem sap, ZR concentrations several orders of magnitude greater than those found endogenously in squash xylem sap (i.e. 2 x 10(-8) M) were required to affect the growth of BY-2 cell protoplasts. The ability to stimulate cell elongation and inhibit cell division in BY-2 cell protoplasts was observed for the ethyl acetate phase fraction (pH 2) of squash xylem sap and an acetonitrile-eluate fraction from reverse-phase chromatography. The xylem sap also showed inhibitory activity for auxin-induced elongation of excised cucumber hypocotyls. These results suggest that an organic substance other than ZR is produced in the root and transported to above-ground organs through the xylem via the transpiration stream, where it is involved in regulating cell proliferation and elongation in the shoot, possibly as an auxin antagonist.  相似文献   

13.
To identify the chemical forms of aluminum (Al) transported from roots to shoots of tea plants (C. sinensis L.), 27Al-nuclear magnetic resonance and 19F NMR spectroscopy were used to analyze xylem sap.The concentration of Al in collected xylem sap was 0.29 mM, twice as high as that of F. Catechins were not detected in xylem sap. The concentration of malic acid in xylem sap was higher than that of citric acid, whereas the concentration of oxalic acid was negligible.There were two signals in the 27Al NMR spectra of xylem sap, a larger signal at 11 ppm and a smaller one at −1.5 ppm. The former signal was consistent with the peak for an Al-citrate model solution, suggesting that an Al-citrate complex was present in xylem sap. Although the latter signal at −1.5 ppm was thought to indicate the presence of an Al-F complex (at 1.7 ppm) in xylem sap, there was only one signal at −122 ppm in the 19F NMR spectrum of xylem sap, indicating that the main F complex in xylem sap was F.These results indicate that Al might be translocated as a complex with citrate, while Al-malate, Al-oxalate and Al-F complexes are not major Al complexes in xylem sap of tea plants.  相似文献   

14.
The effects of iron deficiency on the composition of the xylem sap and leaf apoplastic fluid have been characterized in sugar beet (Beta vulgaris Monohil hybrid). pH was estimated from direct measurements in apoplastic fluid and xylem sap obtained by centrifugation and by fluorescence of leaves incubated with 5-carboxyfluorescein and fluorescein isothiocyanate-dextran. Iron deficiency caused a slight decrease in the pH of the leaf apoplast (from 6.3 down to 5.9) and xylem sap (from 6.0 down to 5.7) of sugar beet. Major organic acids found in leaf apoplastic fluid and xylem sap were malate and citrate. Total organic acid concentration in control plants was 4.3 mM in apoplastic fluid and 9.4 mM in xylem sap and increased to 12.2 and 50.4 mM, respectively, in iron-deficient plants. Inorganic cation and anion concentrations also changed with iron deficiency both in apoplastic fluid and xylem sap. Iron decreased with iron deficiency from 5.5 to 2.5 microM in apoplastic fluid and xylem sap. Major predicted iron species in both compartments were [FeCitOH](-1) in the controls and [FeCit(2)](-3) in the iron-deficient plants. Data suggest the existence of an influx of organic acids from the roots to the leaves via xylem, probably associated to an anaplerotic carbon dioxide fixation by roots.  相似文献   

15.
The aluminium tolerance of several tree species was studied in a cloud forest in Northern Venezuela, growing on a very acid soil and rich in soluble Al. The Al-accumulator species (>1000 ppm in leaves) were compared to non-accumulator ones in relation to total Al concentration in xylem sap, pH and Al concentration in vacuoles, and rhizosphere alkalinization capacity. The Al3+ concentration in the soil solution and the xylem sap were also measured. The results show that in the Al-accumulator plant Richeria grandis, xylem sap is relatively rich in Al and about 35% of it is present in ionic form. In the non-accumulator plant studied (Guapira olfersiana) there is no Al detectable in xylem sap. The pH of vacuolar sap of several Al-accumulator species studied was very acidic and ranged between 2.6–4.8, but the presence of Al in vacuoles was not correlated with the acidity of the vacuolar sap. Both Al-accumulator and non accumulator plants had the capacity to reduce acidity of the rhizosphere and increased the pH of the nutrient solution by one unit within the first 24 hours. Trees growing in natural, high acidity-high Al3+ environment show a series of tolerance mechanisms, such as deposition of Al in vacuoles, Al chelation and rhizosphere alkalinization. These partially ameliorate the toxic effects of this element, but they probably impose a high ecological cost in terms of photosynthate allocation and growth rate.  相似文献   

16.
Collection of Xylem Sap at Flow Rate Similar to in vivo Transpiration Flux   总被引:3,自引:0,他引:3  
We have explored a method to collect xylem sap using a Scholanderpressure chamber for potted plants. Intact root system in potswhich fitted the pressure chamber was pressurised at a pneumaticpressure numerically equal to the absolute value of shoot waterpotential. The rate of xylem flow obtained from the stem stumpunder such pressure was found similar to the rate of transpirationbefore detopping. The rate of pressurised flow from detop-pedroots was linearly related to the pressure applied in both well-wateredand soil-dried plants. The osmotic concentration of the xylemsap was negatively related to the rate of volume flow, suggestingthe necessity to collect xylem sap at in vivo flow rate if originalsolute concentration is to be evaluated. The concentration ofABA in the xylem sap, however, did not show such a relationshipwith water flux. Both well-watered and soil-dried plants showedthe concentration of ABA in xylem sap largely stable with arange of volume flow rate, indicating a linear relationshipbetween the rate of ABA delivery through xylem and that of volumeflow. We also compared the concentrations of ABA in xylem sapsequentially collected from pressurised roots with that fromdetached shoots of the same plants. The concentration of ABAin the initial saps from shoots showed to be similar to thatfrom roots. However, a decrease in the concentration of ABAin the xylem sap collected from detached leaf or twig was observedwhen more volume of sap was collected, which might also be dependenton the plant species and the volume of xylem vessels concerned. (Received February 3, 1997; Accepted October 7, 1997)  相似文献   

17.
Norway spruce is a conifer storing large amounts of terpenoids in resin ducts of various tissues. Parts of the terpenoids stored in needles can be emitted together with de novo synthesized terpenoids. Since previous studies provided hints on xylem transported terpenoids as a third emission source, we tested if terpenoids are transported in xylem sap of Norway spruce. We further aimed at understanding if they might contribute to terpenoid emission from needles. We determined terpenoid content and composition in xylem sap, needles, bark, wood and roots of field grown trees, as well as terpenoid emissions from needles. We found considerable amounts of terpenoids—mainly oxygenated compounds—in xylem sap. The terpenoid concentration in xylem sap was relatively low compared with the content in other tissues, where terpenoids are stored in resin ducts. Importantly, the terpenoid composition in the xylem sap greatly differed from the composition in wood, bark or roots, suggesting that an internal transport of terpenoids takes place at the sites of xylem loading. Four terpenoids were identified in xylem sap and emissions, but not within needle tissue, suggesting that these compounds are likely derived from xylem sap. Our work gives hints that plant internal transport of terpenoids exists within conifers; studies on their functions should be a focus of future research.  相似文献   

18.
The mechanisms regulating stomatal response following exposure to low (5°C) soil temperature were investigated in aspen ( Populus tremuloides Michx.) seedlings. Low soil temperature reduced stomatal conductance within 4 h, but did not alter shoot xylem pressure potential within 24 h. The xylem sap composition was altered and its pH increased from 6.5 to 7.1 within the initial 4 h of the low temperature treatment. However, the increase in abscisic acid (ABA) concentration in xylem sap was observed later, after 8 h of treatment. These changes were accompanied by a reduction in the electrical conductivity and an increase in the osmotic potential of the xylem sap. The timing of physiological responses to low soil temperature suggests that the rapid pH change of the xylem sap and accompanying changes in ion concentration were the initial factors which triggered stomatal closure in low temperature-treated seedlings, and that the role of the more slowly accumulating ABA was likely to reinforce the stomatal closure. When leaf discs were exposed to xylem sap extracted from low soil temperature-treated plants, stomatal aperture was negatively correlated with ABA and positively correlated with K+ concentrations of the xylem sap. The stomatal opening in the leaf discs linearly increased in response to exogenous KCl concentrations when K+ concentrations were in the similar range to those detected in the xylem sap. The lowest concentration of exogenous ABA to induce stomatal closure was several-fold higher compared with the concentration present in the xylem sap.  相似文献   

19.
The extent of interference from xylem sap in an enzyme-linked immunosorbent assay was determined for a woody perennial [ Populus trichocarpa Torr. & Gray x P deltoides Bart, ex Marsh (Hybrid 1l–ll)] and a herbaceous annual ( Phasesolus vulgaris L. cv. Contender). Crude xylem sap collected from excised roots from both species interfered with the assay for zeatin riboside. Assays for zeatin riboside in xylem sap collected from Popidus overestimated endogenous levels, and added standards could not be accurately measured from a range of sap dilutions. When Phaseolus plants were grown under various nutrient regimens, interference in the assay was dependent on nutrient availability. Of xylem sap components (inorganic minerals, amino acids and sucrose) which may vary with environmental conditions or among species, only sucrose interfered at the concentrations tested. Since the pH of xylem sap varies it was necessary to buffer samples prior to analysis. Partial purification using anion exchange columns and Sep-Paks cffectively eliminated interference. These results demonstrate that estimates of plant growth regulators in xylem sap by the ELISA (enzyme-linked immunosorbant assay) method can be influenced by species and environmental conditions such as plant nutritional status.  相似文献   

20.
本文以常规棉品种‘石远321’和抗虫棉品种‘SGK321’与‘99B’为材料, 通过考马斯亮蓝和ELISA方法分析了伤流中可溶性蛋白和Bt(苏云金芽孢杆菌)毒蛋白含量。结果发现, 转基因抗虫棉伤流中可溶性蛋白含量显著高于常规棉, 并在抗虫棉伤流中检测到了Bt毒蛋白, 而常规棉伤流中没有Bt毒蛋白的存在。通过嫁接实验研究发现, 将常规棉嫁接到转Bt基因抗虫棉砧木上, 叶片中也有Bt毒蛋白的积累。这些结果说明, Bt毒蛋白可以通过木质部伤流液向地上部运输, 并在叶片中积累, Bt毒蛋白由根系向地上部的运输对棉花的抗虫性是有益的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号