首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumour necrosis factor-α (TNF-α) is a pro-inflammatory cytokine which is shed in its soluble form by a disintegrin and metalloproteinase (ADAM) called TNF-α convertase (TACE; ADAM17). TNF-α plays a role in inflammatory bowel disease (IBD) and is involved in the expression of inducible nitric oxide synthase (iNOS) which has also been implicated in IBD. The study was designed to investigate whether colitis induced by trinitrobenzene sulphonic acid (TNBS) in rats produces an increase in TACE activity and/or expression and whether its pharmacological inhibition reduces TNF-α levels, iNOS expression and colonic damage in this model. TNBS (30 mg in 0.4 ml of 50% ethanol) was instilled into the colon of female Wistar rats. Saline or TACE inhibitor BB1101 (10 mg/kg/day) was administered intraperitoneally 5 days after TNBS instillation. On day 10, colons were removed and assessed for pathological score, myeloperoxidase (MPO), NO synthase (NOS), TACE enzymatic activity and protein levels, colonic TNF-α and NO−x levels. Instillation of TNBS caused an increase in TACE activity and expression and the release of TNF-α. TNBS also resulted in iNOS expression and colonic damage. BB1101 blocked TNBS-induced increase in TACE activity, TNF-α release and iNOS expression. Concomitantly, BB1101 ameliorated TNBS-induced colonic damage and inflammation. TNBS causes TNF-α release by an increase in TACE activity and expression and this results in the expression of iNOS and subsequent inflammation, suggesting that TACE inhibition may prove useful as a therapeutic means in IBD.  相似文献   

2.
Inflammatory bowel disease (IBD) is a multifactorial disease with an unknown etiology characterized by oxidative stress, leucocyte infiltration and a rise in inflammatory cytokines. In this study, we have investigated the effects of silymarin, a mixture of several flavonolignans with established antioxidant and anti-inflammatory properties, on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Experimental colitis was induced in male Wistar-albino rats by delivering TNBS to the distal colon. All the medicines were administered by gavage for seven days. Thirty-six male rats were divided into six groups containing six rats in each one. Control rats received only TNBS. In the treated groups, animals were given different doses of silymarin (40, 80, and 160 mg/kg). Dexamethasone (1 mg/kg) was used as the positive treatment. Colonic status was investigated seven days post induction of colitis through macroscopic, histological, and biochemical analyses. Amelioration of the morphological signs including macroscopic damage, necrotic area, and histology were seen subsequent to treating animals with silymarin. These observations were accompanied by a significant reduction in the degree of both neutrophil infiltration, indicated by decreased myeloperoxidase activity, and lipid peroxidation, as measured by a decline in malodialdehyde content in inflamed colon as well as a decrease in levels of inflammatory cytokines (TNF-α and IL-1β). The results of the present study reveal that the beneficial effect of silymarin in bowel cells is mediated through its anti-oxidant and anti-inflammatory potentials.  相似文献   

3.
The inflammatory bowel disease (IBD) is an idiopathic, immune-mediated and chronic intestinal condition. In the present study, the effect of Setarud (IMOD), a novel natural drug with known immunomodulatory, anti-inflammatory and antioxidant properties was investigated in experimental colitis in rats and compared with the dexamethasone and infliximab. Immunologic colitis was induced by intracolonic administration of a mixture of trinitrobenzene sulfonic acid (TNBS) and absolute ethanol in male Wistar rats. Animals were divided into 6 groups of sham (normal group), control (vehicle-treated), positive control (dexamethasone 1 mg/kg/day given orally and infliximab 5 mg/kg/day given subcutaneously) and 3 Setarud-treated groups (13.3, 20, 30 mg/kg/day given intraperitoneally). The treatment continued for 14 consecutive days and then animals were decapitated on the day 15 and distal colons were removed for macroscopic, microscopic, and biochemical assays. Biochemical markers, including TNF-alpha, IL-1beta, ferric reducing/antioxidant power (FRAP), myeloperoxidase (MPO) activity and thiobarbitoric acid-reactive substance (TBARS) were measured in the homogenate of colonic tissue. A remarkable reduction in macroscopic and histological damage scores was observed in the animals treated with Setarud. These findings were confirmed by decreased levels of TNF-alpha, interleukin-1beta, MPO activity and TBARS, and raised levels of FRAP in the colon tissue. These observations confirmed the immunomodulatory, anti-inflammatory and antioxidant properties of Setarud in experimental colitis, which was comparable to those of dexamethasone and infliximab.  相似文献   

4.
Tumour necrosis factor-alpha (TNF-alpha) is a pro-inflammatory cytokine which is shed in its soluble form by a disintegrin and metalloproteinase (ADAM) called TNF-alpha convertase (TACE; ADAM17). TNF-alpha plays a role in inflammatory bowel disease (IBD) and is involved in the expression of inducible nitric oxide synthase (iNOS) which has also been implicated in IBD. The study was designed to investigate whether colitis induced by trinitrobenzene sulphonic acid (TNBS) in rats produces an increase in TACE activity and/or expression and whether its pharmacological inhibition reduces TNF-alpha levels, iNOS expression and colonic damage in this model. TNBS (30 mg in 0.4 ml of 50% ethanol) was instilled into the colon of female Wistar rats. Saline or TACE inhibitor BB1101 (10 mg/kg/day) was administered intraperitoneally 5 days after TNBS instillation. On day 10, colons were removed and assessed for pathological score, myeloperoxidase (MPO), NO synthase (NOS), TACE enzymatic activity and protein levels, colonic TNF-alpha and NOx- levels. Instillation of TNBS caused an increase in TACE activity and expression and the release of TNF-alpha. TNBS also resulted in iNOS expression and colonic damage. BB1101 blocked TNBS-induced increase in TACE activity, TNF-alpha release and iNOS expression. Concomitantly, BB1101 ameliorated TNBS-induced colonic damage and inflammation. TNBS causes TNF-alpha release by an increase in TACE activity and expression and this results in the expression of iNOS and subsequent inflammation, suggesting that TACE inhibition may prove useful as a therapeutic means in IBD.  相似文献   

5.

Background

Autonomic nervous system dysfunction is implicated in the etiopathogenesis of inflammatory bowel diseases (IBD). Therapies that increase cardiovagal activity, such as Mind-Body interventions, are currently confirmed to be effective in clinical trials in IBD. However, a poor understanding of pathophysiological mechanisms limits the popularization of therapies in clinical practice. The aim of the present study was to explore the mechanisms of these therapies against 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats using a chronic vagus nerve stimulation model in vivo, as well as the lipopolysaccharide (LPS)-induced inflammatory response in human epithelial colorectal adenocarcinoma cells (Caco-2) by acetylcholine in vitro.

Methods and Results

Colitis was induced in rats with rectal instillation of TNBS, and the effect of chronic VNS (0.25 mA, 20 Hz, 500 ms) on colonic inflammation was evaluated. Inflammatory responses were assessed by disease activity index (DAI), histological scores, myeloperoxidase (MPO) activity, inducible nitric oxide synthase (iNOS), TNF-α and IL-6 production. The expression of Mitogen-activated protein kinases (MAPK) family members, IκB-α, and nuclear NF-κB p65 were studied by immunoblotting. Heart rate variability (HRV) analysis was also applied to assess the sympathetic-vagal balance. DAI, histological scores, MPO activity, iNOS, TNF-α and IL-6 levels were significantly decreased by chronic VNS. Moreover, both VNS and acetylcholine reduced the phosphorylation of MAPKs and prevented the nuclear translocation of NF-κB p65. Methyllycaconitine (MLA) only reversed the inhibitory effect on p-ERK and intranuclear NF-κB p65 expression by ACh in vitro, no significant change was observed in the expression of p-p38 MAPK or p-JNK by MLA.

Conclusion

Vagal activity modification contributes to the beneficial effects of the cholinergic anti-inflammatory pathway in IBD-related inflamed colonic mucosa based on the activation of MAPKs and nuclear translocation of NF-κB. Our work may provide key pathophysiological mechanistic evidence for novel therapeutic strategies that increase the cardiovagal activity in IBD patients.  相似文献   

6.
Accumulating evidence has indicated the implication of angiotensin II in the pathogenesis of inflammatory bowel diseases (IBD) via its proinflammatory features. Telmisartan (TLM) is an angiotensin II receptor antagonist with marked anti-inflammatory and antioxidant actions that mediated its cardio-, reno- and hepatoprotective actions. However, its impact on IBD has not been previously explored. Thus, we aimed to investigate the potential alleviating effects of TLM in tri-nitrobenezene sulphonic acid (TNBS)-induced colitis in rats. Pretreatment with TLM (10 mg/kg p.o.) attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI), colon weight/length ratio, macroscopic damage, histopathological findings and leukocyte migration. TLM suppressed the inflammatory response via attenuation of tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2) and myeloperoxidase (MPO) activity as a marker of neutrophil infiltration besides restoration of interleukin-10 (IL-10). TLM also suppressed mRNA and protein expression of nuclear factor kappa B (NF-κB) p65 and mRNA of cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proinflammatory genes with concomitant upregulation of PPAR-γ. The alleviation of TLM to colon injury was also associated with inhibition of oxidative stress as evidenced by suppression of lipid peroxides and nitric oxide (NO) besides boosting glutathione (GSH), total anti-oxidant capacity (TAC) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). With respect to apoptosis, TLM downregulated the increased mRNA, protein expression and activity of caspase-3. It also suppressed the elevation of cytochrome c and Bax mRNA besides the upregulation of Bcl-2. Together, these findings highlight evidences for the beneficial effects of TLM in IBD which are mediated through modulation of colonic inflammation, oxidative stress and apoptosis.  相似文献   

7.
Crohn′s disease (CD) is associated with gut barrier dysfunction. Tumour necrosis factor-α (TNF-α) plays an important role into the pathogenesis of several inflammatory diseases because its expression is increased in inflamed mucosa of CD patients. Anti-TNF therapy improves significantly mucosal inflammation. Thus, this study aimed to evaluate the effect of Etanercept (ETC), a tumour necrosis factor alpha (TNF-α) antagonist on the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. A total of 18 Wistar rats were randomized into four groups, as follows: (1) Sham: sham induced-colitis; (2) TNBS: non-treated induced-colitis; (3) ETC control; (4) ETC-treated induced-colitis. Rats from group 4 presented significant improvement either of macroscopic or of histopathological damage in the distal colon. The gene expression of TNF-α mRNA, decreased significantly in this group compared to the TNBS non-treated group. The treatment with etanercept attenuated the colonic damages and reduced the inflammation caused by TNBS. Taken together, our results suggest that ETC attenuates intestinal colitis induced by TNBS in Wistar rats by TNF-α downregulation.  相似文献   

8.
The present study is to investigate effects of total glucosides of peony (TGP) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol-induced colitis in rats and to explore potential clinical use of TGP for treatment of inflammatory bowel disease. Sixty Sprague–Dawley rats were randomly grouped into normal controls, model controls, sulfasalazine (SASP) controls (100 mg/kg/day), and low, medium, and high-dose TGP groups (25, 50, and 100 mg/kg/day, respectively). 24 h following colonic instillation of TNBS, TGP, and SASP were given by gastric gavage three times a day for 7 days. Disease activity index (DAI), colon macroscopic damage index (CMDI), histopathological score (HPS), and myeloperoxidase (MPO) activity were evaluated. Levels of serum TNF-α, IL-1β, and IL-10 were measured by ELISA, and expression of TNF-α, IL-1β, and IL-10 mRNA and protein in colonic tissues was detected by RT-PCR and western blot, respectively. Compared with rats in the model controls, TGP (50 or 100 mg/kg/day)-treated rats with TNBS/ethanol-induced colitis showed significant improvements of DAI, CMDI, HPS, and MPO activity. Moreover, administration of TGP (50 or 100 mg/kg/day) decreased the up-regulated levels of serum TNF-α and IL-1β, and expression of TNF-α and IL-1β mRNA and protein in colonic tissues, and increased the serum IL-10 and colonic IL-10 mRNA and protein level. And there was no significant difference compared with administration of SASP (P > 0.05). TGP attenuates TNBS/ethanol-induced colitis in rats and its efficacy is similar to SASP, the potential mechanism might be related to the adjustment of Th1/Th2 cytokines polarization by decreasing pro-inflammatory cytokine TNF-α and IL-1β, and increasing anti-inflammatory cytokine IL-10.  相似文献   

9.
We investigated the role of two cytokines, IL-1β and TNF-α, in the development of absence seizures using a genetic model of absence epilepsy in WAG/Rij rats. We administered these cytokines to animals systemically and measured the number of spike-wave discharges (SWDs) in the EEG. We also coadministered IL-1β with the GABA reuptake inhibitor tiagabine and measured the levels of IL-1β and TNF-α in the brain and blood plasma of 2-, 4-, and 6-month-old WAG/Rij rats and animals that served as a non-epileptic control (ACI). We found that IL-1β induced a significant increase in SWDs 2-5 h after administration, while TNF-α enhanced SWDs much later. Both cytokines enhanced passive behavior; body temperature was elevated only after TNF-α. The action of tiagabine was potentiated by earlier IL-1β injection, even when IL-1β was no longer active. Young WAG/Rij rats showed higher levels of TNF-α in blood serum than young ACI rats; the effects in the brain tended to be opposite. The marked differences in timing of the increase in SWDs suggest different time scales for the action of both cytokines tested. It is proposed that the results found after TNF-α are due to the de novo synthesis of IL-1β. TNF-α may possess neuroprotective effects. IL-1β might increase GABA-ergic neurotransmission. The changes in the efficacy of antiepileptic drugs related to changes in the cytokine systems may have some clinical relevance.  相似文献   

10.
Peripheral tachykinins (TKs) are believed to play a role in the pathogenesis of inflammatory bowel diseases (IBD). In this study we investigated changes induced by central administration of two natural TK receptor agonists, NK(1) (PG-SPI) and NK(3) (PG-KII), on trinitrobenzene sulphonic acid (TNBS)- and dextran sodium sulphate (DSS)-induced experimental colitis in rats. Colitis was induced by instilling a single intracolonic dose of TNBS 50 mgkg(-1) (0.5 ml in 50% ethanol) or by oral administration of 5% DSS for 7 days. Each group of rats was intracerebroventricularly injected daily with PG-SPI and PG-KII (0.5, 5, and 50 microgkg(-1)). On day 3, TNBS-treated animals were killed and the severity of gut inflammation was evaluated by measuring myeloperoxidase (MPO) activity, interleukin-1beta (IL-1beta) production and by scoring macroscopic and histologic colonic damage. DSS-treated animals were checked daily for the length of survival and for stool consistency and faecal blood. In the TNBS group, PG-SPI and PG-KII increased scores for the severity of colonic damage, stimulated the production of IL-1beta and increased granulocyte infiltration into the colon (MPO activity). In the DSS group, PG-SPI and PG-KII decreased the percentage of surviving animals, and increased the number of rats that developed loose stools and blood in the faeces and the MPO activity. These results indicate that centrally injected NK(1) and NK(3) tachykinin receptor agonists play a proinflammatory role in experimentally-induced colitis in rats.  相似文献   

11.
Nicorandil is an orally available drug that can act as a nitric oxide donor, an antioxidant, and an ATP-dependent K channel activator. We hypothesized that it may have a beneficial role in treating diabetic nephropathy. We administered nicorandil to a model of advanced diabetic nephropathy (the streptozotocin-induced diabetes in mice lacking endothelial nitric oxide synthase, eNOSKO); controls included diabetic eNOS KO mice without nicorandil and nondiabetic eNOS KO mice treated with either nicorandil or vehicle. Mice were treated for 8 wk. Histology, blood pressure, and renal function were determined. Additional studies involved examining the effects of nicorandil on cultured human podocytes. Here, we found that nicorandil did not affect blood glucose levels, blood pressure, or systemic endothelial function, but significantly reduced proteinuria and glomerular injury (mesangiolysis and glomerulosclerosis). Nicorandil protected against podocyte loss and podocyte oxidative stress. Studies in cultured podocytes showed that nicorandil likely protects against glucose-mediated oxidant stress via the ATP-dependent K channel as opposed to its NO-stimulating effects. In conclusion, nicorandil may be beneficial in diabetic nephropathy by preserving podocyte function. We recommend clinical trials to determine whether nicorandil may benefit diabetic nephropathy or other conditions associated with podocyte dysfunction.  相似文献   

12.
Brain capillary endothelial cells form the blood–brain barrier (BBB), a highly selective permeability membrane between the blood and the brain. Besides tight junctions that prevent small hydrophilic compounds from passive diffusion into the brain tissue, the endothelial cells express different families of drug efflux transport proteins that limit the amount of substances penetrating the brain. Two prominent efflux transporters are the breast cancer resistance protein and P-glycoprotein (P-gp). During inflammatory reactions, which can be associated with an altered BBB, pro-inflammatory cytokines are present in the systemic circulation. We, therefore, investigated the effect of the pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on the expression and activity of BCRP and P-gp in the human hCMEC/D3 cell line. BCRP mRNA levels were significantly reduced by IL-1β, IL-6 and TNF-α. The strongest BCRP suppression at the protein level was observed after IL-1β treatment. IL-1β, IL-6 and TNF-α also significantly reduced the BCRP activity as assessed by mitoxantrone uptake experiments. P-gp mRNA levels were slightly reduced by IL-6, but significantly increased after TNF-α treatment. TNF-α also increased protein expression of P-gp but the uptake of the P-gp substrate rhodamine 123 was not affected by any of the cytokines. This in vitro study indicates that expression levels and activity of BCRP, and P-gp at the BBB may be altered by acute inflammation, possibly affecting the penetration of their substrates into the brain.  相似文献   

13.
Type 1 diabetes mellitus (T1DM) is characterized by an impairment of the insulin-secreting beta cells with an immunologic base. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and free radicals are believed to play key roles in destruction of pancreatic β cells. The present study was designed to investigate the effect of Silybum marianum seed extract (silymarin), a combination of several flavonolignans with immunomodulatory, anti-oxidant, and anti-inflammatory potential on streptozotocin (STZ)-induced T1DM in mouse. Experimental T1DM was induced in male albino mice by IV injection of multiplelow- doses of STZ for 5 days. Seventy-two male mice in separate groups received various doses of silymarin (20, 40, and 80 mg/kg) concomitant or after induction of diabetes for 21 days. Blood glucose and pancreatic biomarkers of inflammation and toxic stress (IL-1β, TNF-α, myeloperoxidase, lipid peroxidation, protein oxidation, thiol molecules, and total antioxidant capacity) were determined. Silymarin treatment reduced levels of inflammatory cytokines such as TNF-α and IL-1β and oxidative stress mediators like myeloperoxidase activity, lipid peroxidation, carbonyl and thiol content of pancreatic tissue in an almost dose dependent manner. No marked difference between the prevention of T1DM and the reversion of this disease by silymarin was found. Use of silymarin seems to be helpful in T1DM when used as pretreatment or treatment. Benefit of silymarin in human T1DM remains to be elucidated by clinical trials.  相似文献   

14.
There have been suggestions that endothelins (ET-1, ET-2, ET-3) are involved in the pathogenesis of human inflammatory bowel disease (IBD). Furthermore, the non-selective endothelin receptor antagonist, bosentan, ameliorates colonic inflammation in TNBS colitis in rats. However, no studies have measured the tissue expression and release of endothelins in human IBD in direct comparison to experimental TNBS colitis. Mucosal biopsies were obtained from 114 patients (42 Crohn's colitis, 35 ulcerative colitis and 37 normal) and compared to whole colonic segments from rats with TNBS colitis. ET-1/2 levels were reduced in human IBD but greatly increased in experimental TNBS colitis. RT-PCR indicated ET-2 was the predominant endothelin isoform in human IBD whereas ET-1 prevailed in the TNBS model. No associations were found between human IBD and tissue expression, content or release of ET-1/2. Our study shows, therefore, that unlike TNBS colitis in rats, in which ET-1/2 levels are greatly elevated and ET receptor antagonists are efficacious, there is no significant link between endothelins and human IBD.  相似文献   

15.
N Ouyang  C Zhu  D Zhou  T Nie  MF Go  RJ Richards  B Rigas 《PloS one》2012,7(7):e41585
Annexin A1 (ANXA1) inhibits NF-κB, a key regulator of inflammation, the common pathophysiological mechanism of inflammatory bowel diseases (IBD). MC-12, an ANXA1-based tripeptide, suppresses NF-κB activation. Here, we determined the efficacy of MC-12 in the control of IBD. Mice with colitis induced by dextran sodium sulfate (DSS) or 2,4,6-trinitro benzene sulfonic acid (TNBS) were treated with various doses of MC-12 administered intraperitoneally, orally or intrarectally. We determined colon length and the histological score of colitis, and assayed: in colon tissue the levels of TNF-α, IFN-γ, IL-1β, IL-6 and IL-10 by RT-PCR; prostaglandin E(2) (PGE(2)), cytoplasmic phospholipase A(2) (cPLA(2)) and myeloperoxidase by immunoassay; and COX-2 and NF- κB by immunohistochemistry; and in serum the levels of various cytokines by immunoassay. In both models MC-12: reversed dose-dependently colonic inflammation; inhibited by up to 47% myeloperoxidase activity; had a minimal effect on cytoplasmic phospholipase A(2); reduced significantly the induced levels of TNF-α, IFN-γ, IL-1β, IL-6 and IL-10, returning them to baseline. DSS and TNBS markedly activated NF-κB in colonic epithelial cells and MC-12 decreased this effect by 85.8% and 72.5%, respectively. MC-12 had a similar effect in cultured NCM460 normal colon epithelial cells. Finally, MC-12 suppressed the induction of COX-2 expression, the level of PGE(2) in the colon and PGE(2) metabolite in serum. In conclusion, MC-12, representing a novel class of short peptide inhibitors of NF-κB, has a strong effect against colitis in two preclinical models recapitulating features of human IBD. Its mechanism of action is complex and includes pronounced inhibition of NF-κB. MC-12 merits further development as an agent for the control of IBD.  相似文献   

16.
Li J  Zhou R  He WC  Xia B 《Molecular biology reports》2011,38(7):4787-4792
Intestinal trefoil factor (ITF) has been proved to be effective in treatment of ulcerative colitis. However, the mechanisms of it remain unclear. In this study, we observed the effects of combined treatment with 5-aminosalicylic acid (5-ASA) and recombinant human ITF (rhITF) on the expression of Myeloperoxidase (MPO), nuclear factor-κB (NF-κB) and epidermal growth factor (EGF) in trinitrobenzene sulphonic acid (TNBS) induced colitis in rats. Forty Sprague-Dawley (SD) male rats which were induced to distal colitis by the colonic administration of TNBS, were randomly divided into four groups and colonically treated with normal saline (A), 5-ASA (B), rhITF (C), respectively. The macroscopic and histological changes of the colon, activities of MPO, expressions of serum EGF and tissue NF-κB were detected. The results showed that manifestation, colonic damage score and MPO activities of the rats treated with 5-ASA or/and rhITFs were improved, serum EGF production was augmented and expression of tissue NF-κB was down-regulated. Single usage of 5-ASA or rhITF had no significant difference, but combined using of them had more significant and noticeable effects compared to any single treatment. It could be concluded that topical treatment with 5-ASA and rhITF had beneficial effects in treating TNBS-induced colitis of rats and combined treatment was better than single treatment. It was possibly related to suppression of neutrophil infiltration, down-regulation expression of NF-κB and up-regulation expression of EGF.  相似文献   

17.
Nicorandil (N-(2-hydroxyethyl)nicotinamide nitrate) is an antianginal drug, which activates guanylyl cyclase and opens the ATP-dependent K+ channels, actions that have been suggested to mediate its vasodilator activity. We synthesized nicorandil and its two isomers, which vary in the positions of the side chain containing the nitric oxide (NO) donor, and also their corresponding denitrated metabolites. The activities of these compounds were evaluated in an experimental model of pain in mice. Pharmacokinetic parameters of nicorandil and its isomers, as well as the plasma concentrations of the corresponding denitrated metabolites and also nicotinamide and nitrite were determined. Nicorandil exhibited the highest antinociceptive activity, while the ortho-isomer was the least active. Nicorandil and para-nicorandil, which induced higher plasma concentrations of nitrite, exhibited higher antinociceptive activity, which suggests that the release of NO may mediate this activity.  相似文献   

18.
Membrane currents through potassium channels activated by nicorandil, which has a potent coronary vasodilating action, have been studied in ventricular cells of guinea pigs by using the single pipette whole-cell clamp technique. In the presence of 0.1 mM nicorandil, the duration of the action potential was shortened from 196 to 145 ms. Nicorandil markedly increased outward currents at potentials positive to the resting potential. When the difference in the currents before and after the application of nicorandil were plotted against the membrane potential, the current-voltage relation reversed close to the potassium equilibrium potential. The difference current during depolarizing pulses showed no time-dependent relaxation. These results indicate that the current evoked by nicorandil is carried by K+ ions and has voltage-independent kinetics. Power-density spectra obtained in the presence of nicorandil were fitted well by a single Lorentzian curve with a corner frequency of 4.4 Hz. The amplitude of the single-channel unit current was estimated from the relation between the variance and the mean current, and was 0.27 +/- 0.1 pA (n = 7) at -35 mV. The estimated slope conductance was 4.6 +/- 1.7 pS. Nicorandil did not affect Ca2+ currents. It is concluded that nicorandil activates a small-conductance K+ channel without affecting the Ca2+ channel.  相似文献   

19.
Fatigue is a phenomenon in which force reduction has been linked to impairment of several biochemical processes. In skeletal muscle, the ATP-sensitive potassium channels (KATP) are actively involved in myoprotection against metabolic stress. They are present in sarcolemma and mitochondria (mitoKATP channels). K+ channel openers like nicorandil has been recognized for their ability to protect skeletal muscle from ischemia-reperfusion injury, however, the effects of nicorandil on fatigue in slow skeletal muscle fibers has not been explored, being the aim of this study. Nicorandil (10 μM), improved the muscle function reversing fatigue as increased post-fatigue tension in the peak and total tension significantly with respect to the fatigued condition. However, this beneficial effect was prevented by the mitoKATP channel blocker 5-hydroxydecanoate (5-HD, 500 μM) and by the free radical scavenger N-2-mercaptopropionyl glycine (MPG, 1 mM), but not by the nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 100 μM). Nicorandil also decreased lipid peroxidation and maintained both reduced glutathione (GSH) levels and an elevated GSH/GSSG ratio, whereas total glutathione (TGSH) remained unaltered during post-fatigue tension. In addition, NO production, measured through nitrite concentrations was significantly increased with nicorandil during post-fatigue tension; this increase remained unaltered in the presence of nicorandil plus L-NAME, nonetheless, this effect was reversed with nicorandil plus MPG. Hence, these results suggest that nicorandil improves the muscle function reversing fatigue in slow skeletal muscle fibers of chicken through its effects not only as a mitoKATP channel opener but also as NO donor and as an antioxidant.  相似文献   

20.
Nicorandil exhibits a protective effect in the vascular system, which is thought to be due to vasodilatation from opening ATP-dependent potassium channels and donation of nitric oxide. Recently, nicorandil was shown to be renoprotective in models of acute kidney injury and glomerulonephritis. However, the specific mechanisms of renoprotection are unclear. We evaluated the effect of nicorandil on the rat remnant kidney model of chronic kidney disease. Blood pressure was unchanged by a 10-wk course of nicorandil, while albuminuria was significantly reduced. Glomerular injury and tubulointerstitial injury were also ameliorated by nicorandil. Oxidative stress, as noted by renal nitrotyrosine level and urine 8-hydroxy-2'-deoxyguanosine, were elevated in this model and was significantly reduced by nicorandil treatment. Treatment was associated with maintenance of the mitochondrial antioxidant, manganese SOD, in podocytes and with suppression of xanthine oxidase expression in infiltrating macrophages. Interestingly, these two cell types express sulfonylurea receptor 2 (SUR2), a binding site of nicorandil in the ATP-dependent K channel. Consistently, we found that stimulating SUR2 with nicorandil prevented angiotensin II-mediated upregulation of xanthine oxidase in the cultured macrophage, while xanthine oxidase expression was rather induced by blocking SUR2 with glibenclamide. In conclusion, nicorandil reduces albuminuria and ameliorates renal injury by blocking oxidative stress in chronic kidney disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号