首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

2.
The present study investigated the impact of ifosfamide (IFO) on renal thioredoxin reductase (TrxR) activity. In mice treated with IFO for 6 h, TrxR activity significantly decreased in a dose-dependent manner. Subsequently, acute renal failure (ARF) occurred dose-dependently. Like IFO, the well-established TrxR-specific inhibitor auranofin suppresfssed renal TrxR activity and generated ARF too. TrxR was inactivated by IFO preferentially over other antioxidant parameters at 6 h; however, it recovered nearly to normal levels within 12 h. When auranofin was administered at 6 h after IFO treatment, the recovery at 12 h was sharply attenuated. Consequently, ARF was pronouncedly exacerbated. IFO within its maximum tolerated dose did not considerably deplete renal glutathione. However, escalating IFO dose strikingly attacked both the thioredoxin and the glutathione systems, resulting in lethality, which implies that glutathione depletion sensitizes IFO-induced nephrotoxicity and cosuppression of both systems causes more severe toxicological consequences than suppressing the thioredoxin system alone. Indeed, combining IFO with buthionine sulfoximine, an inhibitor of glutathione synthesis, induced much more severe ARF than IFO alone did. Taken together, inhibition of renal TrxR activity can be considered as a pivotal mechanism of IFO-induced ARF, and individuals with lower levels of renal glutathione are at high risk of incurring ARF after IFO treatment.  相似文献   

3.
4.
Singlet oxygen ((1)O(2)) is a reactive oxygen species generated during photo-oxidation, inflammation, and via peroxidase-catalyzed reactions (e.g., myeloperoxidase and eosinophil peroxidase). (1)O(2) oxidizes the free amino acids Trp, Tyr, His, Cys, and Met, and those species present on peptides/proteins, with this resulting in modulation of protein structure and function. Impairment of the activity of antioxidant enzymes may be of relevance to the oxidative stress observed in a number of pathologies involving either light exposure or inflammation. In this study, the effects of (1)O(2) on glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) activity, including the mechanisms of their inactivation, were investigated. Exposure of GPx or TrxR, either as purified proteins or in cell lysates, to Rose Bengal and visible light (an established source of (1)O(2)) resulted in significant, photolysis time-dependent reductions in enzyme activity (10-40%, P<0.05). More extensive inhibition (ca. 2-fold) was detected when the reactions were carried out in D(2)O, consistent with the intermediacy of (1)O(2). No additional inhibition was detected after the cessation of photolysis, eliminating a role for photo-products. Methionine, which reacts rapidly with (1)O(2) (k~10(7)M(-1) s(-1))(,) significantly reduced photo-inactivation at large molar excesses, presumably by acting as an alternative target. Reductants (NaBH(4), DTT, GSH, or NADPH) added after the cessation of (1)O(2) formation were unable to reverse enzyme inactivation, consistent with irreversible enzyme oxidation. Formation of nonreducible protein aggregates and/or fragments was detected for both photo-oxidized GPx and TrxR by SDS-PAGE. An oxidant concentration-dependent increase in protein carbonyls was detected with TrxR but not GPx. These studies thus demonstrate that the antioxidant enzymes GPx and TrxR can be irreversibly inactivated by (1)O(2).  相似文献   

5.
Selenium (Se) is a crucial element exerting antioxidant and neuroprotective effects in different toxic models. It has been suggested that Se acts through selenoproteins, of which thioredoxin reductase (TrxR) is relevant for reduction of harmful hydroperoxides and maintenance of thioredoxin (Trx) redox activity. Of note, the Trx/TrxR system remains poorly studied in toxic models of degenerative disorders. Despite previous reports of our group have demonstrated a protective role of Se in the excitotoxic/pro-oxidant model induced by quinolinic acid (QUIN) in the rat striatum (Santamaría et al., 2003, 2005), the precise mechanism(s) by which Se is inducing protection remains unclear. In this work, we characterized the time course of protective events elicited by Se as pretreatment (Na(2)SO(3), 0.625 mg/kg/day, i.p., administered for 5 consecutive days) in the toxic pattern produced by a single infusion of QUIN (240 nmol/μl) in the rat striatum, to further explore whether TrxR is involved in the Se-induced protection and how is regulated. Se attenuated the QUIN-induced early reactive oxygen species formation, lipid peroxidation, oxidative damage to DNA, loss of mitochondrial reductive capacity and morphological alterations in the striatum. Our results also revealed a novel pattern in which QUIN transiently stimulated an early TrxR cellular localization/distribution (at 30 min and 2 h post-lesion, evidenced by immunohistochemistry), to further stimulate a delayed protein activation (at 24 h) in a manner likely representing a compensatory response to the oxidative damage in course. In turn, Se induced an early stimulation of TrxR activity and expression in a time course that "matches" with the reduction of the QUIN-induced oxidative damage, suggesting that the Trx/TrxR system contributes to the resistance of nerve tissue to QUIN toxicity.  相似文献   

6.
The selenoprotein thioredoxin reductase (TrxR1) is an essential antioxidant enzyme known to reduce many compounds in addition to thioredoxin, its principle protein substrate. Here we found that TrxR1 reduced ubiquinone-10 and thereby regenerated the antioxidant ubiquinol-10 (Q10), which is important for protection against lipid and protein peroxidation. The reduction was time- and dose-dependent, with an apparent K(m) of 22 microm and a maximal rate of about 12 nmol of reduced Q10 per milligram of TrxR1 per minute. TrxR1 reduced ubiquinone maximally at a physiological pH of 7.5 at similar rates using either NADPH or NADH as cofactors. The reduction of Q10 by mammalian TrxR1 was selenium dependent as revealed by comparison with Escherichia coli TrxR or selenium-deprived mutant and truncated mammalian TrxR forms. In addition, the rate of reduction of ubiquinone was significantly higher in homogenates from human embryo kidney 293 cells stably overexpressing thioredoxin reductase and was induced along with increasing cytosolic TrxR activity after the addition of selenite to the culture medium. These data demonstrate that the selenoenzyme thioredoxin reductase is an important selenium-dependent ubiquinone reductase and can explain how selenium and ubiquinone, by a combined action, may protect the cell from oxidative damage.  相似文献   

7.
Cellular defense systems against reactive oxygen species (ROS) include thioredoxin reductase (TrxR) and glutathione reductase (GR). They generate sulfhydryl-reducing systems which are coupled to antioxidant enzymes, the thioredoxin and glutathione peroxidases (TPx and GPx). The fruit fly Drosophila lacks a functional GR, suggesting that the thioredoxin system is the major source for recycling glutathione. Whole genome in silico analysis identified two non-selenium containing putative GPx genes. We examined the biochemical characteristics of one of these gene products and found that it lacks GPx activity and functions as a TPx. Transgene-dependent overexpression of the newly identified Glutathione peroxidase homolog with thioredoxin peroxidase activity (Gtpx-1) gene increases resistance to experimentally induced oxidative stress, but does not compensate for the loss of catalase, an enzyme which, like GTPx-1, functions to eliminate hydrogen peroxide. The results suggest that GTPx-1 is part of the Drosophila Trx antioxidant defense system but acts in a genetically distinct pathway or in a different cellular compartment than catalase.  相似文献   

8.
Thioredoxin (Trx) and thioredoxin reductase (TrxR) plus NADPH, comprising the thioredoxin system, has a large number of functions in DNA synthesis, defense against oxidative stress and apoptosis or redox signaling with reference to many diseases. All three isoenzymes of mammalian TrxR contain an essential selenocysteine residue, which is the target of several drugs in cancer treatment or mercury intoxication. The cytosolic Trx1 acting as the cells’ protein disulfide reductase is itself reversibly redox regulated via three structural Cys residues. The evolution of mammalian Trx system compared to its prokaryotic counterparts may be an adaptation to the use of hydrogen peroxide and nitric oxide in redox regulation and signal transduction.  相似文献   

9.
10.
In this study, we investigated the effect of diphenyl ditelluride (PhTe)2 administration (10 and 50?μmol/kg) on adult mouse behavioral performance as well as several parameters of oxidative stress in the brain and liver. Adult mice were injected with (PhTe)2 or canola oil subcutaneously (s.c.) daily for 7?days. Results demonstrated that (PhTe)2 induced prominent signs of toxicity (body weight loss), behavioral alterations and increased in lipid peroxidation in brain. 50?μmol/kg (PhTe)2 inhibited blood δ-aminolevulinic acid dehydratase (δ-ALA-D), a redox sensitive enzyme. (PhTe)2 caused an increase in cerebral non-protein thiol (NPSH) and protein thiol (PSH) groups. In the liver, 50?μmol/kg (PhTe)2 decreased NPSH, but did not alter the content of protein thiol groups. (PhTe)2 decreased cerebral antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), and thioredoxin reductase (TrxR). In liver, (PhTe)2 increase SOD and GR and decreased GPx activity. Results obtained herein suggest that the brain was more susceptible to oxidative stress induced by (PhTe)2 than the liver. Furthermore, we have demonstrated for the first time that TrxR is an in vivo target for (PhTe)2. Combined, these results highlight a novel molecular mechanism involved in the toxicity of (PhTe)2. In particular the inhibition of important selenoenzymes (TrxR and GPx) seems to be involved in the neurotoxicity associated with (PhTe)2 exposure in adult mice.  相似文献   

11.
The thioredoxin (Trx) system, involving redox active Trxs and thioredoxin reductases (TrxRs), sustain a number of important Trx-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense, and redox-regulated signaling cascades. Methylmercury (MeHg) is an important environmental toxicant that has a high affinity for thiol groups and can cause oxidative stress. The Trx system is the major system responsible for maintaining the redox state of cells and this function involves thiol reduction mediated by selenol groups in TrxRs. MeHg has a great affinity to thiols and selenols, thus the potential toxic effects of MeHg on TrxR inhibition were determined in the current study. A single administration of MeHg (1, 5, and 10 mg/Kg) caused a marked inhibition of kidney TrxR activity, while significant inhibition was observed in the liver after exposure to 5 and 10 mg/Kg of MeHg. TrxR activity was determined 24 h after MeHg. In the brain, MeHg did not inhibit TrxR activity. In vitro exposure to MeHg indicated that MeHg inhibits cerebral (IC50, 0.158 μM), hepatic (IC50, 0.071 μM), and renal TrxR activity (IC50, 0.078 μM). The results presented herein demonstrated for the first time that renal and hepatic TrxRs can serve as an in vivo target for MeHg. This study suggests that MeHg can bind to selenocysteine residues present in the catalytic site of TrxR, in turn causing enzyme inhibition that can compromise the redox state of cells.  相似文献   

12.
13.
Thioredoxin reductase (TrxR), a component of the redox control system involving thioredoxin (Trx), is implicated in defense against oxidative stress, control of cell growth and proliferation, and regulation of apoptosis. In the present study a stable transfectant was made by introducing the vector pcDNA3.0 harboring the fission yeast TrxR gene into COS-7 African green monkey kidney fibroblast cells. The exogenous TrxR gene led to an increase in TrxR activity of up to 3.2-fold but did not affect glutathione (GSH) content, or glutaredoxin and caspase-3 activities. Levels of reactive oxygen species (ROS), but not those of nitric oxide (NO), were reduced. Conversely, 1-chloro-2,4-dinitrobezene (CDNB), an irreversible inhibitor of mammalian TrxR, enhanced ROS levels in the COS-7 cells. After treatment with hydrogen peroxide, the level of intracellular ROS was lower in the transfectants than in the vector control cells. These results confirm that TrxR is a crucial determinant of the level of cellular ROS during oxidative stress as well as in the normal state.  相似文献   

14.
Motexafin gadolinium (MGd) is a chemotherapeutic drug that selectively targets tumor cells and mediates redox reactions generating reactive oxygen species. Thioredoxin (Trx), NADPH, and thioredoxin reductase (TrxR) of the cytosol/nucleus or mitochondria are major thiol-dependent reductases with many functions in cell growth, defense against oxidative stress, and apoptosis. Mammalian TrxRs are selenocysteine-containing flavoenzymes; MGd was an NADPH-oxidizing substrate for human or rat TrxR1 with a Km value of 8.65 microM (kcat/Km of 4.86 x 10(4) M(-1) s(-1)). The reaction involved redox cycling of MGd by oxygen producing superoxide and hydrogen peroxide. MGd acted as a non-competitive inhibitor (IC50 of 6 microM) for rat TrxR. In contrast, direct reaction between MGd and reduced human Trx was negligible. The corresponding reaction with reduced Escherichia coli Trx was also negligible, but MGd was a better substrate (kcat/Km of 2.23 x 10(5) M(-1) s(-1)) for TrxR from E. coli and a strong inhibitor of Trx-dependent protein disulfide reduction. Ribonucleotide reductase (RNR), a 1:1 complex of the non-identical R1- and R2-subunits, catalyzes the essential de novo synthesis of deoxyribonucleotides for DNA synthesis using electrons from Trx and TrxR. MGd inhibited recombinant mouse RNR activity with either 3 microM reduced human Trx (IC50 2 microM) or 4 mM dithiothreitol (IC50 6 microM) as electron donors. Our results demonstrate MGd-induced enzymatic generation of reactive oxygen species by TrxR plus a powerful inhibition of RNR. This may explain the effects of the drug on cancer cells, which often overproduce TrxR and have induced RNR for replication and repair.  相似文献   

15.
Cytosolic thioredoxin (Trx) and thioredoxin reductase (TrxR) comprise a ubiquitous system that uses the reducing power of NADPH to act as a general disulfide reductase system as well as a potent antioxidant system. Human and rat mitochondria contain a complete thioredoxin system different from the one present in the cytosol. The mitochondrial system is involved in the oxidative stress protection through a mitochondrial thioredoxin-dependent peroxidase. We report here the cDNA cloning and chromosomal localization of the mouse mitochondrial thioredoxin reductase gene (TrxR2). The mouse TrxR2 cDNA encodes for a putative protein of 527 amino acid residues with a calculated molecular mass of 57 kDa, that displays high homology with the human and rat counterparts. The N-terminus of the protein displays typical features of a mitochondrial targeting sequence with absence of acidic residues and abundance of basic residues. Mouse TrxR2 also contains a stop codon in frame at the C-terminus of the protein, necessary for the incorporation of selenocysteine that is required for enzymatic activity. The typical stem-loop structure (SECIS element) that drives the incorporation of selenocysteine is identified in the 3'-UTR. Northern analysis of the mouse TrxR2 mRNA shows a similar pattern of expression with the human homologue, with higher expression in liver, heart and kidney. Finally, we have assigned the mouse TrxR2 gene to chromosome 16 mapping at 11.2 cM from the centromer and linked to the catechol-o-methyltransferase (comt) gene.  相似文献   

16.
Curcumin analogs were first investigated for their inhibitory effects on thioredoxin reductase (TrxR). Most of them were more potent TrxR inhibitors than natural curcumin. The structure-activity relationship was summarized, and the curcumin analog was found to inhibit TrxR irreversibly in a time-dependent manner. The action was caused by covalent modification of the redox-active residues Cys(497) and Sec(498) in TrxR.  相似文献   

17.
Plasmodium falciparum is the most prevalent and deadly species of the human malaria parasites, and thioredoxin reductase (TrxR) is an enzyme involved in the redox response to oxidative stress. Essential for P. falciparum survival, the enzyme has been highlighted as a promising target for novel antimalarial drugs. Here we report the discovery and characterization of seven molecules from an antimalarial set of 13533 compounds through single-target TrxR biochemical screens. We have produced high-purity, full-length, recombinant native enzyme from four Plasmodium species, and thioredoxin substrates from P. falciparum and Rattus norvegicus. The enzymes were screened using a unique, high-throughput, in vitro native substrate assay, and we have observed selectivity between the Plasmodium species and the mammalian form of the enzyme. This has indicated differences in their biomolecular profiles and has provided valuable insights into the biochemical mechanisms of action of compounds with proven antimalarial activity.  相似文献   

18.
19.

Background

Mammalian thioredoxin reductases (TrxR) are selenoproteins with important roles in antioxidant defense and redox regulation, principally linked to functions of their main substrates thioredoxins (Trx). All major forms of TrxR are intracellular while levels in serum are typically very low.

Methods

Serum TrxR levels were determined with immunoblotting using antibodies against mouse TrxR1 and total enzyme activity measurements were performed, with serum and tissue samples from mouse models of liver injury, as triggered by either thioacetamide (TAA) or carbon tetrachloride (CCl4).

Results

TrxR levels in serum increased upon treatment and correlated closely with those of alanine aminotransferase (ALT), an often used serum biomarker for liver damage. In contrast, Trx1, glutathione reductase, superoxide dismutase or selenium-containing glutathione peroxidase levels in serum displayed much lower increases than TrxR or ALT.

Conclusions

Serum TrxR levels are robustly elevated in mouse models of chemically induced liver injury.

General significance

The exaggerated TrxR release to serum upon liver injury may reflect more complex events than a mere passive release of hepatic enzymes to the extracellular milieu. It can also not be disregarded that enzymatically active TrxR in serum could have yet unidentified physiological functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号