首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pSSVx genetic element from Sulfolobus islandicus REY15/4 is a hybrid between a plasmid and a fusellovirus, able to be maintained in non-integrative form and to spread when the helper SSV2 virus is present in the cells. In this work, the satellite virus was engineered to obtain an Escherichia coliSulfolobus solfataricus shuttle vector for gene transfer and expression in S.solfataricus by fusing site-specifically the pSSVx chromosome with an E.coli plasmid replicon and the ampicillin resistance gene. The pSSVx-based vector was proven functional like the parental virus, namely it was able to spread efficiently through infected S.solfataricus cells. Moreover, the hybrid plasmid stably transformed S.solfataricus and propagated with no rearrangement, recombination or integration into the host chromosome. The high copy number of the artificial genetic element was found comparable with that calculated for the wild-type pSSVx in the new host cells, with no need of genetic markers for vector maintenance in the cells and for transfomant enrichment.

The newly constructed vector was also shown to be an efficient cloning vehicle for the expression of passenger genes in S.solfataricus. In fact, a derivative plasmid carrying an expression cassette of the lacS gene encoding the β-glycosidase from S.solfataricus under the control of the Sulfolobus chaperonine (thermosome tf55) heat shock promoter was also able to drive the expression of a functional enzyme. Complementation of the β-galactosidase deficiency in a deletion mutant strain of S.solfataricus demonstrated that lacS gene was an efficient marker for selection of single transformants on solid minimal lactose medium.

  相似文献   

2.
K M Stedman  C Schleper  E Rumpf  W Zillig 《Genetics》1999,152(4):1397-1405
Directed open reading frame (ORF) disruption and a serial selection technique in Escherichia coli and the extremely thermophilic archaeon Sulfolobus solfataricus allowed the identification of otherwise cryptic crucial and noncrucial viral open reading frames in the genome of the archaeal virus SSV1. It showed that the 15. 5-kbp viral genome can incorporate a 2.96-kbp insertion without loss of viral function and package this DNA properly into infectious virus particles. The selection technique, based on the preferential binding of ethidium bromide to relaxed DNA and the resulting inhibition of endonuclease cleavage to generate a pool of mostly singly cut molecules, should be generally applicable. A fully functional viral shuttle vector for S. solfataricus and E. coli was made. This vector spreads efficiently through infected cultures of S. solfataricus, its replication is induced by UV irradiation, it forms infectious virus particles, and it is stable at high copy number in both S. solfataricus and E. coli. The classification of otherwise unidentifiable ORFs in SSV1 facilitates genetic analysis of this virus, and the shuttle vector should be useful for the development of genetic systems for Crenarchaeota.  相似文献   

3.
Sulfolobus solfataricus has developed into an important model organism for molecular and biochemical studies of hyperthermophilic archaea. Although a number of in vitro systems have been established for the organism, efficient tools for genetic manipulations have not yet been available for any hyperthermophile. In this work, we have developed a stable and selectable shuttle vector based on the virus SSV1 of Sulfolobus shibatae. We have introduced pUC18 for propagation in Escherichia coli and the genes pyrEF coding for orotidine-5'-monophosphate pyrophosphorylase and orotidine-5'-monophosphate decarboxylase of Sulfolobus solfataricus as selectable marker to complement pyrimidine auxotrophic mutants. Furthermore, the beta-galactosidase gene (lacS) was introduced into this vector as a reporter under the control of the strong and heat-inducible promoter of the Sulfolobus chaperonin (thermosome). After transformation of a S. solfataricus pyrEF/lacS double mutant, the vector was found to reside as a single-copy vector, stably integrated into the host chromosome via the site-specific recombination system of SSV1. Specific beta-galactosidase activities in transformants were found to be fourfold higher than in wild-type S. solfataricus cells, and increased to more than 10-fold after heat shock. Greatly increased levels of lacS mRNA were detected in Northern analyses, demonstrating that this reporter gene system is suitable for the study of regulated promoters in Sulfolobus and that the vector can also be used for the high-level expression of genes from hyperthermophilic archaea.  相似文献   

4.
The minimal replicon of the Pseudomonas plasmid pVS1 was genetically defined and combined with the Escherichia coli p15A replicon, to provide a series of new, oligocopy cloning vectors (5.3 to 8.3 kb). Recombinant plasmids derived from these vectors were stable in growing and nongrowing cells of root-colonizing P. fluorescens strains incubated under different environmental conditions for more than 1 month.  相似文献   

5.
Plasmid pHEN7 from Sulfolobus islandicus was sequenced (7.83 kb) and shown to belong to the archaeal pRN family, which includes plasmids pRN1, pRN2, pSSVx and pDL10 that share a large conserved sequence region. pHEN7 is most closely related to pRN1 in this conserved region. It also shares a large variant region containing several homologous genes with pDL10, which is absent from the other plasmids. The variant region is flanked by the sequence motif TTAGAATGGGGATTC and similar duplicated motifs occur in plasmids pRN1 and pRN2, separated by a few bases. It is inferred that recombination at these sites produces the main genetic variability in the plasmid family. The conserved region of the plasmid, and duplicated copies of the motif, are also present in the genome of Sulfolobus solfataricus P2. Moreover, they are bordered by a partitioned integrase gene (int) and by a 45 bp perfect direct repeat corresponding to the downstream half of a tRNA(Val) gene. The integrase and the direct repeat are highly similar in sequence to the integrase and the chromosomal integration site (att), respectively, of the SSV1 virus, which integrates into the chromosome of Sulfolobus shibatae. Recombination at the att repeats in S. solfataricus would produce a novel plasmid, pXQ1, which carries both an intact integrase gene and a single integration site (att). This strongly suggests that the same mechanism of site-specific integration at a tRNA gene is used for both viruses and plasmids in Sulfolobus.  相似文献   

6.
7.
Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80 degrees C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at http://dac.molbio.ku.dk/dbs/Sulfolobus.  相似文献   

8.
9.
The thermoacidophiles Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 are considered key model organisms representing a major phylum of the Crenarchaeota. Because maintaining current, accurate genome information is indispensable for modern biology, we have updated gene function annotation using the arCOGs database, plus other available functional, structural and phylogenetic information. The goal of this initiative is continuous improvement of genome annotation with the support of the Sulfolobus research community.  相似文献   

10.
A set of broad-host-range single-replicon shuttle vectors for cloning nucleotide sequences in gram-positive bacteria (lactobacilli, enterococci, lactococci, bacilli, etc.) was created. The vectors are based on the cryptic plasmid pLF1311 from Lactobacillus fermentum VKM 1311 belonging to a family of the sigma-type pE194-like plasmids. The vectors can replicate in gram-positive bacteria and Escherichia coli. They are stable in many gram-positive bacteria, have small sizes, and allow the selection of recombinants on media with X-Gal. The vectors that contain the region of initiation of the conjugal transfer of plasmid RP4 belonging to the incompatibility group IncP alpha can be mobilized in a great number of bacteria using a helper plasmid from E. coli but not from gram-positive bacteria.  相似文献   

11.
We have determined the nucleotide sequences of the 5 S rRNAs of three thermophilic bacteria: the archaebacterium Sulfolobus solfataricus, also named Caldariella acidophila, and the eubacteria Bacillus acidocaldarius and Thermus aquaticus. A 5 S RNA sequence for the latter species had already been published, but it looked suspect on the basis of its alignment with other 5 S RNA sequences and its base-pairing pattern. The corrected sequence aligns much better and fits in the universal five helix secondary structure model, as do the sequences for the two other examined species. The sequence found for Sulfolobus solfataricus is identical to that determined by others for Sulfolobus acidocaldarius. The secondary structure of its 5 S RNA shows a number of exceptional features which distinguish it not only from eubacterial and eukaryotic 5 S RNAs, but also from the limited number of archaebacterial 5 S RNA structures hitherto published. The free energy change of secondary structure formation is large in the three examined 5 S RNAs.  相似文献   

12.
A set of broad-host-range single-replicon shuttle vectors for cloning nucleotide sequences in gram-positive bacteria (lactobacilli, enterococci, lactococci, bacilli, etc.) was created. The vectors are based on the cryptic plasmid pLF 1311 fromLactobacillus fermentum VKM 1311, belonging to the family of the σ-type pE194-like plasmids. The vectors can replicate in gram-positive bacteria andEscherichia coli. They are stable in many gram-positive bacteria, have small sizes, and allow the selection of recombinants on media with X-Gal. The vectors that contain the region of initiation of the conjugal transfer of plasmid RP4 belonging to the incompatibility group IncPα can be mobilized in a great number of bacteria using a helper plasmid fromE. coli but not from gram-positive bacteria  相似文献   

13.
A tri-functional monomeric primase-polymerase domain encoded by the plasmid pIT3 from Sulfolobus solfataricus strain IT3 was identified using a structural-functional approach. The N-terminal domain of the pIT3 replication protein encompassing residues 31-245 (i.e. Rep245) was modeled onto the crystallographic structure of the bifunctional primase-polymerase domain of the archaeal plasmid pRN1 and refined by molecular dynamics in solution. The Rep245 protein was purified following overexpression in Escherichia coli and its nucleic acid synthesis activity was characterized. The biochemical properties of the polymerase activity such as pH, temperature optima and divalent cation metal dependence were described. Rep245 was capable of utilizing both ribonucleotides and deoxyribonucleotides for de novo primer synthesis and it synthesized DNA products up to several kb in length in a template-dependent manner. Interestingly, the Rep245 primase-polymerase domain harbors also a terminal nucleotidyl transferase activity, being able to elongate the 3'-end of synthetic oligonucleotides in a non-templated manner. Comparative sequence-structural analysis of the modeled Rep245 domain with other archaeal primase-polymerases revealed some distinctive features that could account for the multifaceted activities exhibited by this domain. To the best of our knowledge, Rep245 typifies the shortest functional domain from a crenarchaeal plasmid endowed with DNA and RNA synthesis and terminal transferase activity.  相似文献   

14.
Evidence is accumulating that normally folded proteins retain a significant tendency to form amyloid fibrils through a direct assembly of monomers in their native-like conformation. However, the factors promoting such processes are not yet well understood. The acylphosphatase from Sulfolobus solfataricus (Sso AcP) aggregates under conditions in which a native-like state is initially populated and forms, as a first step, aggregates in which the monomers maintain their native-like topology. An unstructured N-terminal segment and an edge beta-strand were previously shown to play a major role in the process. Using kinetic experiments on a set of Sso AcP variants we shall show that the major event of the first step is the establishment of an inter-molecular interaction between the unstructured segment of one Sso AcP molecule and the globular unit of another molecule. This interaction is determined by the primary sequence of the unstructured segment and not by its physico-chemical properties. Moreover, we shall show that the conversion of these initial aggregates into amyloid-like protofibrils is an intra-molecular process in which the Sso AcP molecules undergo conformational modifications. The obtained results allow the formulation of a model for the assembly of Sso AcP into amyloid-like aggregates at a molecular level.  相似文献   

15.
We have stably transformed both Haloarcula vallismortis and Haloarcula hispanica with the halobacterium-Escherichia coli shuttle vectors pWL102 (based on the Haloferax volcanii pHV2 replicon) and pUBP2 (based on the Halobacterium halobium pHH1 replicon). Haloferax volcanii, Halobacterium halobium, and Haloarcula vailismortis are equally distant from one another and span the phylogenetic depth of the halophilic Archaea; thus, these vectors may be generally useful for the halophiles. Both Haloarcula vallismortis and Haloarcula hispanica exhibit previously unreported complex life cycles and are therefore significant as genetically approachable models of cellular differentiation within the Archaea.  相似文献   

16.
The cloning vector pME290 (6.8 kb), which is derived from thePseudomonas plasmid pVS1 and has about 7 copies, was mutagenized in vitro to provide derivatives with altered copy numbers. Thus, pME292 (about 1–3 copies) and pME294 (about 15–20 copies) were isolated. These vectors were used in the characterization of theP. aeruginosa argF gene encoding ornithine carbamoyltransferase.  相似文献   

17.
The stereoselective transfer of hydrogen from NADH to oxaloacetate catalysed by malate dehydrogenases (EC 1.1.1.37) from the thermoacidophilic archaebacteria Sulfolobus acidocaldarius and Thermoplasma acidophilum was studied by the p.m.r. method described by Zhou & Wong [(1981) J. Biochem. Biophys. Methods 4, 329-338]. Both enzymes are A-side (pro-R) stereospecific for NADH.  相似文献   

18.
19.
The carboxylesterase, a 34 kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 85 degrees C and 8.0, respectively. The enzyme showed remarkable thermostability: 41% of its activity remained after 5 days of incubation at 80 degrees C. In addition, the purified enzyme exhibited stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity towards various PNP esters and short acyl chain triacylglycerols such as tributyrin (C4:0). Among the PNP esters tested, the best substrate was PNP-caprylate (C8) with Km and kcat values of 71 microM and 14,700 s(-1), respectively. The carboxylesterase gene consisted of 915 bp corresponding to 305 amino acid residues. We demonstrated that active recombinant S. solfataricus carboxylesterase could be expressed in Escherichia coli. The enzyme was identified as a serine esterase belonging to mammalian hormone-sensitive lipases (HSL) family and contained a catalytic triad composed of serine, histidine, and aspartic acid in the active site.  相似文献   

20.
Park YJ  Yoon SJ  Lee HB 《Journal of bacteriology》2008,190(24):8086-8095
A novel thermostable arylesterase, a 35-kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 94°C and 7.0, respectively. The enzyme displayed remarkable thermostability: it retained 52% of its activity after 50 h of incubation at 90°C. In addition, the purified enzyme showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity besides showing an arylesterase activity toward aromatic esters: it exhibits not only carboxylesterase activity toward tributyrin and p-nitrophenyl esters containing unsubstituted fatty acids from butyrate (C4) to palmitate (C16), but also paraoxonase activity toward organophosphates such as p-nitrophenylphosphate, paraoxon, and methylparaoxon. The kcat/Km ratios of the enzyme for phenyl acetate and paraoxon, the two most preferable substrates among all tested, were 30.6 and 119.4 s−1·μM−1, respectively. The arylesterase gene consists of 918 bp corresponding to 306 amino acid residues. The deduced amino acid sequence shares 34% identity with that of arylesterase from Acinetobacter sp. strain ADP1. Furthermore, we successfully expressed active recombinant S. solfataricus arylesterase in Escherichia coli. Together, our results show that the enzyme is a serine esterase belonging to the A-esterases and contains a catalytic triad composed of Ser156, Asp251, and His281 in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号