首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
Peptides which should be generated from the neuropeptide FF (NPFF) precursor were identified in mouse and rat spinal cord, by using reverse phase high pressure liquid chromatography with radioimmunoassay and electrospray mass spectrometry detection. In both species, two octapeptides, NPFF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) and NPSF (Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe-amide) were identified but a longer peptide NPA-NPFF (Asn-Pro-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) was present at the highest concentration in rat spinal cord. In mouse, the homologous peptide, SPA-NPFF (Ser-Pro-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) was not detected. Both peptides NPFF and NPSF reverse morphine-induced analgesia in the tail flick test. Our data reveal species differences in the maturation of NPFF precursor.  相似文献   

2.
Sol JC  Roussin A  Proto S  Mazarguil H  Zajac JM 《Peptides》1999,20(10):1219-1227
Degradation of neuropeptide FF (NPFF) and SQA-neuropeptide FF (SQA-NPFF) by mouse brain sections was investigated by using capillary electrophoresis with UV detection for the separation and the identification of the degradation products. The half disappearance time of SQA-NPFF was 2-fold greater than that of NPFF. NPFF was cleaved preferentially into an inactive metabolite, Gln-Arg-Phe-NH2, in the cerebrum slices. SQA-NPFF was hydrolyzed by an unidentified degrading activity to generate NPFF, and NPFF accounted for a larger part of SQA-NPFF degradation in the hindbrain and cervical spinal cord than in the cerebrum slices. These findings suggest that, depending on the brain regions, NPFF produced from SQA-NPFF could prolong the biologic effects of SQA-NPFF.  相似文献   

3.
Several neuropeptide FF (NPFF)-related peptides, known as modulators of the opioid system, have been previously characterized in bovine and rodent brain. Reverse-phase high pressure liquid chromatography (HPLC) fractions of a human with normal pressure hydrocephalus cerebrospinal fluid (CSF), co-migrating with NPFF-related synthetic peptides, were characterized by capillary HPLC coupled on-line to nanospray ion trap tandem mass spectrometry. Two peptides present in the pro-NPFF(A) precursor, NPAF (AGEGLNSQFWSLAAPQRF-NH2) and NPSF (SLAAPQRF-NH2), were identified. The monitoring of NPFF-related peptides in human CSF can be helpful to understand their roles in pain sensitivity.  相似文献   

4.
We demonstrated the production and release of a peptide structurally identical with porcine and bovine VIP-28 in human neuroblastoma NB-OK-1 cell line. In the cells, VIP-like immunoreactive (IR-VIP) components of 8 K dalton (Kd), 11 Kd, 18 Kd and 30 Kd were also detected and the 8 Kd and 18 Kd components were apparently released into the culture medium, indicating the possibility of less extended or limited processing of the VIP precursor in the cultured cells of tumor origin. The cells were also shown to produce, simultaneously with the VIP-28, a PHI/PHM-like immunoreactive (IR-PHI/PHM) component which coeluted with synthetic PHM-27, not PHI-27, in reverse-phase high performance liquid chromatography (HPLC). In addition to the PHM-27-like component, another IR-PHI/PHM component was detected in the cell extract which eluted in HPLC immediately before synthetic PHM-27 and crossreacted with PHI-27 amino-terminal specific antiserum but not with PHI-27 central-portion specific or PHM-27 carboxyl-terminal specific antiserum. The presence in NB-OK-1 cells of this IR-PHI/PHM component related to the amino-terminal portion of PHI/PHM suggested possible alternative(s) of post-translational processing of the VIP precursor in the cells in terms of the production of PHM-27-related peptides.  相似文献   

5.
Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor. Because GnIH and NPFF belong to the RFamide peptide family in vertebrates, protochordate RFamide peptides may provide important insights into the evolutionary origin of GnIH and NPFF. In this study, we identified a novel gene encoding RFamide peptides and two genes of their putative receptors in the amphioxus Branchiostoma japonicum. Molecular phylogenetic analysis and synteny analysis indicated that these genes are closely related to the genes of GnIH and NPFF and their receptors of vertebrates. We further identified mature RFamide peptides and their receptors in protochordates. The identified amphioxus RFamide peptides inhibited forskolin induced cAMP signaling in the COS-7 cells with one of the identified amphioxus RFamide peptide receptors expressed. These results indicate that the identified protochordate RFamide peptide gene is a common ancestral form of GnIH and NPFF genes, suggesting that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. GnIH gene and NPFF gene may have diverged by whole-genome duplication in the course of vertebrate evolution.  相似文献   

6.
Recent studies have shown that cAMP analogs can induce expression of prepro (pp) orphanin FA (OFQ)/nociceptin-related gene products in NS20Y mouse neuroblastoma cells (Saito et al. [1996]. J Biol Chem 271, 15615-15622). Additionally, exposure of NS20Y cells to cAMP analogs promoted neurite outgrowth and large dense-core vesicle formation. Even though an OFQ-like precursor (called 27K) was identified in NS20Y cell extracts, no secretion of OFQ-related peptides was detected. We have used reversed-phase high-performance liquid chromatography combined with a specific radioimmunoassay for OFQ(1-17) to determine if NS20Y cells secrete ppOFQ-derived peptides when stimulated by the cAMP analog ctp-cAMP. We found that NS20Y cells secreted abundant amounts of OFQ-derived products when stimulated by cAMP analogs. We also have determined that secretion of OFQ peptides was both time and concentration dependent and reversible on removal of cAMP analogs from the culture medium. In addition, the opioid agonist D-Pen2-D-Pen5-enkephalin inhibited forskolin-stimulated OFQ peptide secretion. Further, the synthetic glucocorticoid dexamethasone virtually abolished ctp-cAMP-stimulated OFQ peptide secretion. These results suggest that the biosynthesis, processing, and secretion of the OFQ neuropeptide transmitter system can be modulated through intracellular cAMP levels and that these functions are regulated by opioids and molecules involved in mediating the stress response. The NS20Y cell system will be extremely valuable for studying the regulation of OFQ-derived peptides by a variety of intra-cellular and extracellular signaling pathways.  相似文献   

7.
We have applied a recently developed HPLC-MS enzymatic assay to investigate the cryptic peptides generated by the action of the insulin-degrading enzyme (IDE) on some neuropeptides (NPs) involved in the development of tolerance and dependence to opioids. Particularly, the tested NPs are generated from the NPFF precursor (pro-NPFF (A)): NPFF (FLFQPQRF) and NPAF (AGEGLSSPFWSLAAPQRF). The results show that IDE is able to cleave NPFF and NPAF, generating specific cryptic peptides. As IDE is also responsible for the processing of many other peptides in the brain (amyloid beta protein among the others), we have also performed competitive degradation assays using mixtures of insulin and the above mentioned NPs. Data show that insulin is able to slow down the degradation of both NPs tested, whereas, surprisingly, NPAF is able to accelerate insulin degradation, hinting IDE as the possible link responsible of the mutual influence between insulin and NPs metabolism.  相似文献   

8.
9.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

10.
Yang HY  Iadarola MJ 《Peptides》2006,27(5):943-952
The possible roles of the NPFF system in pain processing are summarized from the viewpoints of (1) biological activities of NPFF, (2) anatomical distribution of NPFF and its receptor(s) and (3) the regulation of NPFF and receptor(s) in animal models of pain. NPFF and NPFF analogues were found to have analgesic, pronociceptive and morphine modulating activities. Since the isolation of NPFF, several other RF-NH2 peptides have been identified and some of them were found to have nociceptive or morphine modulating activity. Depending on the pharmacological doses and locations of administration, NPFF may exhibit the biological activities of other structurally related RF-NH2 peptides thus complicating NPFF bioactivity studies and their interpretation. Acid sensing ion channels were found to respond to RF-NH2 peptides including NPFF, raising the possibility that interaction of NPFF and acid sensing ion channels can modulate nociceptive activity. NPFF and NPFF receptor mRNAs are highly expressed and localized in the superficial layers of the dorsal cord, the two genes are also in dorsal root ganglia though at much lower level. The spinal NPFF system is up-regulated by peripheral inflammation in the rat. Furthermore, immunohistochemically, NPFF receptor 2-protein was demonstrated to be increased in the primary afferents in the spinal cord of rats with peripheral inflammation. Regulation and localization of spinal NPFF systems, taken together with the analgesic bioactivity of intrathecally administered NPFF, strongly suggest involvement of spinal NPFF system in pain processing.  相似文献   

11.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

12.
Clonal mouse neuroblastoma cells were fused with cells from human foetal dorsal root ganglia and several continuously-growing hybrid clones isolated. One hybrid cell line (F2.1D1) containing a number of human chromosomes, was shown to retain the ability to extend neurites in response to dibutyryl cyclic AMP and to express various antigens characteristic of human foetal dorsal root ganglion neurons. The X-chromosome-controlled 12E7 antigen, human Thy-1 and the neuron-specific F12.A2B5 antigen were identified as surface components of the hybrid cells. None of these antigens were detected in the parental neuroblastoma cell line. In addition, using a species-specific monoclonal antibody, the hybrid cells were shown to synthesize human neurofilament protein. This is the first demonstration of the continued expression of a human species- and neuron-specific gene product in a human-mouse somatic cell hybrid.  相似文献   

13.
Kametani F 《FEBS letters》2004,570(1-3):73-76
Abeta is the major component of amyloid in the brain in Alzheimer's disease and is derived from Alzheimer amyloid precursor protein (APP) by sequential proteolytic cleavage involving alpha-, beta- and gamma-secretase. Recently, gamma-secretase was shown to cleave near the cytoplasmic membrane boundary of APP (called the epsilon-cleavage), as well as in the middle of the membrane domain (gamma-cleavage). However, the precise relationship between gamma- and epsilon-cleavage is still unknown. In this paper, I analyzed Abeta-related peptides using immunoprecipitation and liquid chromatography ion trap mass spectrometer and found some long Abeta-related peptides, starting at Abeta residues 16Lys-23Asp and ending at 43Thr-52Leu, in the culture media of COS-1 cells and in human brain extract. These results indicated that longer Abeta-related peptides cleaved at epsilon-cleavage site were secreted under normal conditions and were dependent on the alpha-secretase cleavage products.  相似文献   

14.
The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.  相似文献   

15.
Anti-opioid activities of NPFF1 receptors in a SH-SY5Y model   总被引:2,自引:0,他引:2  
In order to elucidate the mechanisms of the neuronal anti-opioid activity of Neuropeptide FF, we have transfected the SH-SY5Y neuroblastoma cell line, which expresses mu- and delta-opioid receptors, with the human NPFF1 receptor. The SH1-C7 clone expresses high affinity NPFF1 receptors in the same range order of density as opioid receptors. Similarly to the opioids, acute stimulation with the NPFF1 agonist NPVF inhibits adenylyl cyclase activity and voltage-gated (N-type) Ca2+ currents and enhances the intracellular Ca2+ release triggered by muscarinic receptors activation. In contrast, preincubation of cells with NPVF decreases the response to opioids on both calcium signaling, thus reproducing the cellular anti-opioid activity described in neurons. SH1-C7 cells are therefore a suitable model to investigate the interactions between NPFF and opioid receptors.  相似文献   

16.
Fang Q  Guo J  Chang M  Chen LX  Chen Q  Wang R 《Peptides》2005,26(5):791-797
Neuropeptide FF (NPFF) and NPVF, two closely NPFF related peptides, have different affinities for the two NPFF receptors (NPFF1 and NPFF2). To assess the peripheral effects of NPFF receptors in the gastrointestinal tract motility, NPFF and NPVF were tested in the mouse isolated distal colon. Both NPFF (1-15 microM) and NPVF (1-15 microM) dose-dependently caused significant colonic contractions. Pre-treatment with the putative NPFF antagonist, BIBP3226 (30 microM) abolished the contractile responses to the two neuropeptides (3 microM). They had no additional contractile activities in colonic preparations contracted by Nomega-nitro-L-arginine (30 microM). Moreover, the contractions of these two neuropeptides were weakened by L-arginine (2 mM). The responses to NPFF (5 microM) and NPVF (5 microM) were not modified by atropine or naloxone (1 microM). Furthermore, NPFF (1 microM) and NPVF (1 microM) did not influence the contractive responses to acetylcholine (0.1-10 microM), morphine (1 microM) or nociceptin (0.1 microM). These data suggest that NPFF and NPVF cause contractions of the mouse distal colon via their NPFF receptors and this effect is mediated by NO but not by cholinergic pathways, independently from opioid system. In addition, the isolated bioassay may be applied as a simple parameter to characterize the potential NPFF agonists and antagonists.  相似文献   

17.
NPFF precursor, pro-NPFF(A) contains three known bioactive sequences: NPFF (FLFQPQRF-NH(2)), neuropeptide AF (NPAF; AGEGLSSPFWSLAAPQRF-NH(2)) and neuropeptide SF (NPSF; SLAAPQRF-NH(2)). The key-feature of these fragments is their common PQRF-amidated sequence at their C termini. Here, we evaluated the biological activity of two other sequences derived from the mouse NPFF(A) precursor, that does not have PQRF-amidated C-terminus. One peptide was residing between positions 85 and 99 in the mice pro-NPFF(A). This peptide was referred to as neuropeptide SA (NPSA; SAWGSWSKEQLNPQA), assigned due to its flanking amino acids. Another sequence used in the experiments was N-terminal fragment of NPSA, here referred to as neuropeptide SS (NPSS; SAWGSWS). These two peptides, classified as crypteins, were synthesized and tested in the hot-plate and tail immersion tests in mice for their pharmacological activity in morphine-induced antinociception. The effects of both crypteins were compared to NPFF. Our experiments indicated that both crypteins inhibited morphine antinociception and their effects were reversed by RF9, an antagonist of NPFF receptors. These data show that NPSA and NPSS possess NPFF-like anti-opioid activity in these behavioral tests.  相似文献   

18.
Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5′ untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat.  相似文献   

19.
[(125)I]EYF ([(125)I]EYWSLAAPQRFamide), a new radioiodinated probe derived from a peptide present in the rat Neuropeptide FF precursor (EFWSLAAPQRFamide, EFW-NPSF) was synthesized and its binding characteristics investigated on sections of the rat spinal cord and on membranes of mouse olfactory bulb. In both tissues, [(125)I]EYF binding was saturable and revealed a very high affinity interaction with a single class of binding sites in rat and mouse (K(D) = 0.041 and 0.019 nM, respectively).Competition studies showed that [(125)I]EYF bound to one class of binding sites exhibiting a high affinity for all the different peptides the precursor could generate (NPA-NPFF, SPA-NPFF, NPFF, EFW-NPSF, QFW-NPSF) with the exception of NPSF which displayed a low affinity.Autoradiographic studies demonstrated that [(125)I]EYF binding sites were fully inhibited by a synthetic Neuropeptide FF agonist (1DMe) in all areas of the rat brain. The density of [(125)I]EYF binding sites was high in the intralaminar thalamic nuclei, the parafascicular thalamic nucleus and in the superficial layers of the dorsal horn.Non specific binding reached 5-10% of the total binding in all brain areas. Similarly, in mouse brain experiments, the non-specific binding was never superior to 10%.These findings demonstrate that putative neuropeptides generated by the Neuropeptide FF precursor and containing the NPFF or NPSF sequences should bind to the same receptor. Furthermore, these data indicate that [(125)I]EYF is a useful radiolabeled probe to investigate the NPFF receptors; its major advantages being its high affinity and the very low non-specific binding it induces.  相似文献   

20.
1. beta-Amyloid precursor protein cross-reactive polypeptides were detected in the membrane extracts of a mouse neuroblastoma cell line, NB41A3. Four immunoreactive polypeptide bands were observed on western blots of a cell membrane extract. Their molecular weights as estimated by polyacrylamide gel electrophoresis ranged from 89.1 to 41 kDa. 2. After heparin affinity chromatography, two of these polypeptides strongly cross-reacted with an antibody that recognizes Alzheimer beta-amyloid precursor protein. 3. From the heparin binding fraction, these protein were further separated by reverse-phase high-performance liquid chromatography. A cross-reactive protein was isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号