首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The lizard Sceloporus jarrovi (Phrynosomatidae) is one of the most widely studied viviparous reptiles of North America. Past research has assumed that placentation in this species is relatively simple and functions mainly in gas exchange. Our examination of the late stage placenta via transmission electron microscopy reveals that S. jarrovi has a unique combination of placental characteristics, with unusual specializations for secretion and absorption. In the chorioallantoic placenta, chorionic and uterine tissues are directly apposed through eggshell loss, and their epithelia are greatly attenuated, enhancing gas exchange; this placenta shows evidence of both nutrient transfer and endocrine function. Contrary to past inferences, a yolk sac placenta forms from the avascular omphalopleure and persists through the end of gestation. The uterine epithelium is enlarged and secretory, and the fetal omphalopleure shows branching absorptive channels and other specializations for uptake. Elsewhere, the omphalopleure develops elongated folds that protrude into a coagulum of degenerating shell membrane and other organic material. Uterine tissue in this region shows specializations for absorption. Placental features in S. jarrovi have unexpected functional implications, and challenge assumptions that specializations for nutrient transfer are confined to matrotrophic species. J. Morphol. 271:1153–1175, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Examination of late-stage placental material of the lizard Chalcides chalcides from the Hubrecht Laboratorium (Utrecht, The Netherlands) reveals several cytological and histological specializations that appear to have been superimposed over a morphological pattern that is typical for squamates. The chorioallantoic placenta is highly vascularized and consists of a single mesometrial placentome and a generalized paraplacentomal region, both of which are epitheliochorial. The placentome is deciduate, and contains deeply interdigitating folds of hypertrophied uterine and chorioallantoic tissue. Chorionic epithelium lining the placentome comprises enlarged, microvilliated cells, a small proportion of which are diplokaryocytes. The placentomal uterine epithelium is not syncytial and consists of enlarged cells bearing microvilli. The yolk sac placenta is a true omphaloplacenta (sensu stricto), being formed by juxtaposition of uterine tissues to an avascular, bilaminar omphalopleure. Epithelium of the omphalopleure is stratified and is hypertrophied into papillae that project into detritus of the uterine lumen. The omphalopleure is separated from the yolk sac proper by a yolk cleft that is not confluent with the exocoelom and is not invaded by the allantois. Neither an omphalallantoic placenta nor a true choriovitelline placenta is present in late gestation. Morphologically, the mature placentae of C. chalcides are among the most specialized to have been described in reptiles, reflecting the substantial maternal-fetal nutrient transfer that occurs in this species. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Surface topography and cross-sections of the placental membranes were examined by scanning electron microscopy in two species of Thamnophis. The chorionic epithelium of the chorioallantoic placenta consists of broad, squamous cells that lack surface specializations. The apposed uterine epithelium contains ciliated cells and larger, nonciliated cells. Neither the epithelium of the chorion nor that of the uterus is eroded; thus, underlying capillaries are not exposed to the luminal surface. In both the omphaloplacenta and the omphalallantoic placenta, epithelium of the omphalopleure consists of brush-border cells bearing prominent microvilli, interspersed with cells bearing minuscule microvilli. These surface epithelial cells are joined at their apices and their lateral surfaces are extensively sculpted by intercellular channels, presenting the appearance of an epithelium specialized for absorption. Deep to the epithelium lie the yolk spheres of the isolated yolk mass, interspersed with endodermal cells. Surface topography of the uterine epithelia of the omphaloplacenta and omphalallantoic placenta is relatively unspecialized. The acellular shell membrane separates maternal and fetal tissues in each of the three placental types. Marked differences in surface features of the chorioallantois and omphalopleure probably reflect different roles of these membranes in gas exchange and transfer of water and nutrients.  相似文献   

4.
Analysis of placentation in the final stages of development in Mabuya mabouya shows that the placenta is formed by the apposition of the chorioallantois to the uterine mucosa implicating the entire embryonic chamber, because the allantoic vesicle invades all the exocoelom. The chorioallantoic placenta presents the features proper of a type IV allantoplacenta. However, in the mesometrial area peripheral to the placentome, we found that the paraplacentome is an additional zone specialized for histotrophic transfer, and is separated from the rest of the embryonic chamber by a chorionic invagination formed of polymorphic cells. The chorionic areolae are components of the embryonic hemisphere; they are in apposition to an endometrium with columnar epithelial cells and several glands that secrete toward the cavity of the areolae. They are observed only in the preparturition stage, probably operating in maternal-fetal transfer of nutrients during the last embryonic growth stage. The mesometrial hemisphere possesses specializations related to histotrophic nutrition (placentome, paraplacentome, and chorionic areolae), while in the abembryonic hemisphere there is an allantoplacenta of mixed function, with capacity for histotrophic nutrition and for gas exchange. The absorptive plaques are small rounded areas constituted by chorionic cells similar to the paraplacentomal chorionic cells, in intimate apposition with a secretory uterine epithelium. Separating the absorptive plaques are respiratory segments histologically similar to the type I allantoplacenta. The additional histotrophic areas found for this species demonstrate the great specialization of this allantoplacenta, and support the highest degree of matrotrophy among reptiles reached in the Neotropical Mabuya.  相似文献   

5.
Virginia striatula is a viviparous snake with a complex pattern of embryonic nutrition. Nutrients for embryonic development are provided by large, yolked eggs, supplemented by placental transfer. Placentation in this species is surprisingly elaborate for a predominantly lecithotrophic squamate reptile. The embryonic-maternal interface consists of three structurally distinct areas, an omphalallantoic placenta and a regionally diversified chorioallantoic placenta. The chorioallantoic placenta over the embryonic hemisphere (paramesometrial region) of the egg, features close apposition of embryonic and uterine blood vessels because of the attenuate form of the interceding epithelial cells. The periphery of the chorioallantoic placenta, which is adjacent to the omphalallantoic placenta, is characterized by a simple cuboidal uterine epithelium apposed to a stratified cuboidal chorionic epithelium. There are no sites with attenuate epithelial cells and close vascular apposition. The morphology of the omphalallantoic placenta is similar to that of the peripheral chorioallantoic placenta, except that the height of uterine epithelial cells is greater and allantoic blood vessels are not associated with the embryonic epithelium. The functional capabilities of the three placental regions are not known, but structural characteristics suggest that the omphalallantoic placenta and peripheral zone of the chorioallantoic placenta are sites of nutritional provision via histotrophy. The paramesometrial region of the chorioallantoic placenta is also nutritive, in addition to functioning as the primary embryonic respiratory system. The structure of the chorioallantoic placenta of V. striatula is a new placental morphotype for squamate reptiles that is not represented by a classic model for the evolution of reptilian placentation.  相似文献   

6.
Placental membranes mediate maternal‐fetal exchange in all viviparous reptilian sauropsids. We used scanning electron microscopy to examine the placental interface in the mountain spiny lizard, Sceloporus jarrovi (Phrynosomatidae). From the late limb bud stage until birth, the conceptus is surrounded by placental membranes formed from the chorioallantois and yolk sac omphalopleure. The chorioallantois lies directly apposed to the uterine lining with no intervening shell membrane. Both fetal and maternal sides of the chorioallantoic placenta are lined by continuous layers of flattened epithelial cells that overlie dense capillary networks. The chorioallantoic placenta shows specializations that enhance respiratory exchange, as well as ultrastructural evidence of maternal secretion and fetal absorption. The yolk sac placenta contains enlarged fetal and maternal epithelia with specializations for histotrophic nutrient transfer. This placenta lacks intrinsic vascularity, although the vascular allantois lies against its inner face, contributing to an omphallantoic placenta. In a specialized region at the abembryonic pole, uterine and fetal tissues are separated by a compact mass of shed shell membrane, yolk droplets, and cellular debris. The omphalopleure in this region develops elongate folds that may contribute to sequestration and absorption of this material. Fetal membrane morphogenesis and composition in S. jarrovi are consistent with those of typical squamates. However, this species exhibits unusual placental specializations characteristic of highly placentotrophic lizards. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

7.
Placental nutrient provision has evolved in multiple lineages of squamate reptiles and although possible structural specializations for placentotrophy have been described in a variety of species, neither the pathways nor the mechanisms of placental transfer are known. Lizards of the Australian genus Pseudemoia are placentotrophic and have elaborate placental structures that are thought to enhance nutrient transfer. The chorioallantoic placenta, which occupies the embryonic hemisphere of the egg, is regionally diversified into a large area with low epithelial height and a smaller placentome with cuboidal or columnar epithelia. Both regions are underlain by an extensive vascular bed. The abembryonic hemisphere of the egg is covered by an omphaloplacenta, which is similar to the placentome in having cuboidal or columnar epithelia but with a different embryonic vascular supply. We tested the hypothesis that embryonic epithelial cells of the placentome and the omphaloplacenta of Pseudemoia entrecasteauxii are each capable of endocytosis. Embryos (stages 33-39) with intact extraembryonic membranes were surgically removed from the uterus and incubated in a solution containing fluorescein isothiocyanate-dextran (77,000 MW). The fluorescent label was detected in the cytoplasm of scattered populations of epithelial cells in both placental regions of all embryonic stages. We conclude that both the placentome and the omphaloplacenta of P. entrecasteauxii are sites of histotrophic nutrient transport. However, there are histological and cytological differences in the embryonic epithelia of these two placental regions. The histological differences reflect differences in the evolutionary precursors of each tissue. The cytological differences likely portray different functional specializations.  相似文献   

8.
Mabuya species are highly matrotrophic viviparous lizards with Type IV epitheliochorial allantoplacenta. The allantoplacenta of an Andean population of this genus, currently assigned to Mabuya sp., possesses specializations related to histotrophic nutrition at the embryonic hemisphere (placentome, paraplacentome, and chorionic areolas), while at the abembryonic hemisphere it has a mixed function: histotrophic transfer (absorptive plaques) and hemotrophic nutrition (gas exchange in respiratory segments). These placental specializations were studied using high-resolution light microscopy and transmission electron microscopy, and were compared with those found in other squamate reptiles and eutherian mammals. Cytological features of the placentome suggest that this is an important region for nutritional provision; the paraplacentome also shows characteristics for nutrient transfer, especially lipids. Chorionic areolas allow the absorption of glandular products, as well as uterine and chorionic cellular debris produced by lysis of some cells of both epithelia during areola formation. In the absorptive plaques both uterine and chorionic epithelia are firmly attached and their cellular apices exhibit electron-dense granules that could be related to autocrine and paracrine functions. The short interhemal distance found in the respiratory segments confirms their role in gas exchange. A common feature of all regional specializations in the Mabuya sp. allantoplacenta is the presence of lipids in the interacting chorionic and uterine epithelia, suggesting that lipids are transferred throughout the entire embryonic chamber; placental transfer of lipids may be the principal fetal energy and lipid source in this species. In spite of this feature, each one of the specialized areas of the allantoplacenta has different features suggesting particular functions in the transfer of nutrients (as ions, lipids, proteins, amino acids, sugar, water, and gases), and in the possible synthesis of hormones and proteins. The placental complexity observed in this species of Mabuya is greater than in any other reptile, and resembles that of eutherian mammals: Each one of these specializations of the placental membranes in Mabuya sp. is similar to those found among different eutherian mammals, indicating a very impressive evolutionary convergence at the histological and cytological levels between both clades. However, no eutherian mammal species simultaneously displays all of these specializations in the embryonic chamber as does Mabuya sp.  相似文献   

9.
Pseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal–embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical‐shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85–90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin‐D28K, and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin‐D28K and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin‐D28K to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin‐D28K and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin‐D28K expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the hypothesis that regional structural differentiation in the placenta reflects functional specializations for calcium transport. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Scalopus membranes are characterized by: Superficial nidation; antimesometrial orientation of the embryonic disc; amniogenesis by folding; an extensive but transitory choriovitelline placenta; a large yolk sac with late and incomplete inversion; large persistent allantoic vesicle; a very broad, thin, villous, epitheliochorial chorioallantoic placenta of annular shape interrupted mesometrially, dotted with numerous areolae, and bordered by a nonvillous sparsely vascular chorioallantoic membrane connected with the persistent bilaminar omphalopleure by a very narrow rim of chorion. There is no decidua. Electron microscopy shows that at 8 mm, CR, (limb bud embryo) the uterine epithelium of the interhemal membrane may be 0.5 micron or less in thickness, but that it shows no signs of degeneration. Trophoblastic microvilli often penetrate the epithelium to within 0.2 micron of its base. At this time there is active secretion by the uterine glands, and cellular hypertrophy and cytolysis of the epithelium at the gland mouths, with active phagocytosis by the areolar cytotrophoblast. The occurrence of absorptive areolae in an insectivore emphasizes the probable primitiveness of this widely distributed placental mechanism. In spite of similarities of the yolk sac to that of rabbits and rodents, the bilaminar omphalopleure produces no invasive trophoblastic giant cells. The definitive membranes of Parascalops breweri and Scapanus latimanus are like those of Scalopus. The placentae of Talpa europaea, Condylura cristata, and Neurotrichus gibbsii are discoid and relatively much smaller, thicker and more complex in internal structure. There is some reason to believe that the fetal membrane systems of moles and shrews (Soricoidea) are more like those of the ancestral mammalian stock than are those of any other recent eutherians.  相似文献   

11.
The structural features of the uterine epithelium of the chorioallantoic placenta and omphalloplacenta in the viviparous Australian skink, Pseudemoia entrecasteauxii, were investigated using SEM and TEM techniques. In particular, the structural characteristics that would allow interpretation of function were analyzed, particularly those of gas exchange in the chorioallantoic placenta and histotrophy in the omphaloplacenta. Pseudemoia entrecasteauxii has a complex placenta consisting of a placentome, paraplacentome, and omphaloplacenta. The paraplacentome has a well-vascularized lamina propria in which projecting uterine capillaries displace the overlying uterine epithelial cells, reducing them to attenuated cytoplasmic extensions. Associated cell nuclei and organelles are lost from this region, to provide a capillary lumen to uterine lumen barrier of 0.5-1.0 microm. Hence, the paraplacentome is likely a prominent site for gaseous exchange via simple diffusion. The omphaloplacenta has a similar cytology to that of the placentome, but the uterine epithelial cells are hypertrophied and the apical plasma membrane actively secretes vesicles into the uterine lumen. The omphaloplacenta shows features that are associated with histotrophic transport of nutrients via vesicle secretion, very similar to that of lipid apocrine secretion. The placentome consists of cuboidal cells in the uterine epithelium, with large centrally located nuclei overlying the well-vascularized lamina propria. Although the placentome has a similar cytological structure to that of the omphaloplacenta, granules or active vesicle secretion were not observed. Thus, the placentome may be associated with histotrophy, but not via apocrine secretion. Squamate placentation is epitheliochorial; however, we propose a new term be used to describe the type of placentation in P. entrecasteauxii: "cyto-epitheliochorial," because of the extreme attenuation of uterine epithelial cells of the paraplacentome.  相似文献   

12.
A prominent scenario for the evolution of reptilian placentation infers that placentotrophy arose by gradual modification of a simple vascular chorioallantoic placenta to a complex structure with a specialized region for nutrient transfer. The structure of the chorioallantoic placenta of Niveoscincus ocellatus, apparently described originally from a single embryonic stage, was interpreted as a transitional evolutionary type that provided support for the model. Recently, N. ocellatus has been found to be as placentotrophic as species with complex chorioallantoic placentae containing a specialized region called a placentome. We studied placental development in N. ocellatus and confirmed that the chorioallantoic placenta lacks specializations found in species with a placentome. We also found that this species has a specialized omphaloplacenta. The chorioallantoic placenta is confined to the region adjacent to the embryo by a membrane, similar to that found in some other viviparous skinks, that divides the egg into embryonic and abembryonic hemispheres. We term this structure the "inter-omphalopleuric" membrane. The position of this membrane in N. ocellatus is closer to the embryonic pole of the egg than to the abembryonic pole and thus the surface area of the omphaloplacenta is greater than that of the chorioallantoic placenta. In addition, the omphaloplacenta is regionally diversified and more complex histologically than the chorioallantoic placenta. An impressive and unusual feature of the omphaloplacenta of N. ocellatus is the development of extensive overlapping folds in the embryonic component of mid-gestation embryos. The histological complexity and extensive folding of the omphaloplacenta make this a likely site of placental transfer of nutrients in this species.  相似文献   

13.
The evolution of viviparity alters the physical relationship between mothers and offspring and the prevalence of viviparity among squamate reptiles presents an opportunity to uncover patterns in the evolution of placental structure. Understanding the breadth of this diversity is limited because studies of placental structure and function have emphasized a limited number of lineages. We studied placental ontogeny using light microscopy for an embryological series of the Mexican gerrhonotine lizard, Mesaspis viridiflava. This species develops an elaborate yolk sac placenta, an omphaloplacenta, which receives vascular support arising in a structure known only from other gerrhonotine lizards. A prominent feature of the omphaloplacenta is a zone of uterine and embryonic epithelial cell hyperplasia located at the upper shoulder of the yolk mass, often extending above the yolk mass. The omphaloplacenta covers more than one-half of the surface area of maternal—embryonic contact. The chorioallantoic placenta has a more restricted distribution because the allantois remains in the embryonic hemisphere of the egg throughout development and lies internal to the vascular support for the omphaloplacenta in areas where they overlap. The structural profile of the chorioallantoic placenta indicates a potential for respiratory exchange and/or hemotrophic nutritive transport, while that of the omphaloplacenta suggests that nutritive transfer is primarily via histotrophy. An eggshell is present in the earliest embryonic stages examined but regresses relatively early in development. Placental specializations of this species are consistent with a pattern of matrotrophic embryonic nutrition and have evolved in a unique lineage specific developmental pattern.  相似文献   

14.
In the viviparous lizard Trachylepis ivensi (Scincidae) of central Africa, reproducing females ovulate tiny ~1 mm eggs and supply the nutrients for development by placental means. Histological study shows that this species has evolved an extraordinary placental pattern long thought to be confined to mammals, in which fetal tissues invade the uterine lining to contact maternal blood vessels. The vestigial shell membrane disappears very early in development, allowing the egg to absorb uterine secretions. The yolk is enveloped precocially by the trilaminar yolk sac and no isolated yolk mass or yolk cleft develops. Early placentas are formed from the chorion and choriovitelline membranes during the neurula through pharyngula stages. During implantation, cells of the chorionic ectoderm penetrate between uterine epithelial cells. The penetrating tissue undergoes hypertrophy and hyperplasia, giving rise to sheets of epithelial tissue that invade beneath the uterine epithelium, stripping it away. As a result, fetal epithelium entirely replaces the uterine epithelium, and lies in direct contact with maternal capillaries and connective tissue. Placentation is endotheliochorial and fundamentally different from that of all other viviparous reptiles known. Further, the pattern of fetal membrane development (with successive loss and re‐establishment of an extensive choriovitelline membrane) is unique among vertebrates. T. ivensi represents a new extreme in placental specializations of reptiles, and is the most striking case of convergence on the developmental features of viviparous mammals known. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
In the scincid lizard Chalcides chalcides, females ovulate small ova and supply most of the nutrients for development by placental means. The yolk is enveloped precocially by extraembryonic ectoderm and endoderm during the gastrula stage, establishing a simple bilaminar yolk sac placenta. The shell membrane begins to degenerate at this time, resulting in apposition of extraembryonic and maternal tissues. A true chorioplacenta has developed by the early pharyngula stage, as has a choriovitelline placenta and the first stages of an omphaloplacenta. Although the choriovitelline membrane disappears rapidly, the omphaloplacenta spreads to occupy the entire abembryonic pole. The yolk cleft is not confluent with the exocoelom, and no omphalallantoic placenta develops. By the limb-bud stage, an allantoplacenta has been established, with a mesometrial placentome composed of interdigitating ridges of chorioallantois and uterine mucosa. The discovery of five distinct placental arrangements in this species, three of which are transitory and two of which have not previously been recorded in reptiles, emphasizes the need for accounts that specify ontogenetic stages and the precise identity and composition of squamate placental membranes. Contrary to previous interpretations, the pattern of extraembryonic membrane development in C. chalcides is evolutionarily conservative, despite the presence of a reduced yolk mass and cytological specializations for nutrient transfer. Our observations indicate that substantial placentotrophy can evolve in squamates without major modifications of morphogenetic patterns. J Morphol 232:35–55, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The viviparous African skink, Eumecia anchietae, exhibits a matrotrophic fetal nutritional pattern. Until well after the limb bud stage, extravitelline nutritional provision is in the form of holocrine secretion originating from the stratified uterine epithelium of the uterine incubation chambers. Uterine secretions are absorbed by a specialized yolk sac ectoderm and chorioallantois through histotrophy. The yolk sac is not in close contact with the uterine lining from the limb bud stage onwards. The yolk sac ectoderm forms invaginations filled with uterine secretion and consists of a single layer of vacuolated hypertrophied cells bearing microvilli. The chorioallantois at the limb bud stage is extensive, well-vascularized, and not intimately associated with the uterine epithelium. Where the uterus is folded, the chorioallantois may interdigitate loosely. Chorionic cells are low to high columnar, clearly vacuolated, and bear microvilli. The allantoic layer consists primarily of squamous cells exhibiting villous projections. By the time embryos have well-defined digits, the specialized yolk sac ectoderm has regressed and the yolk sac lumen has been invaded by vitelline cells. The chorioallantois is very extensive and in areas greatly folded. Where it contacts the uterine epithelium, a proper chorioallantoic placenta is formed. Cell layers of the chorioallantois and uterine epithelium are thin and cuboidal to squamous in appearance. The chorioallantoic placenta is simple in structure, occurs throughout the incubation chamber, and is epitheliochorial in arrangement. It is unknown whether the placentome observed in other highly matrotrophic scincids is formed in late stage embryos of this species.  相似文献   

17.
《Journal of morphology》2017,278(5):665-674
As part of a broad survey of placental structure, function, and evolution in reptilian sauropsids paraffin‐section histology was used to study microscopic anatomy of the uterus and fetal membranes of three species of North American watersnakes (Nerodia : Colubridae). The pre‐ovulatory uterus is poorly vascularized with inactive shell glands. These shell glands are activated during vitellogenesis but regress during pregnancy. Two placentas develop through apposition of the uterine lining to the chorioallantois and the yolk sac omphalopleure. Fetal and maternal components of the chorioallantoic placenta are progressively vascularized during development. Their epithelia are attenuated, but (contrary to a previous report), epithelia of neither the uterus nor the chorion are eroded. The fetal portion of the yolk sac placenta is an omphalallantois, formed of avascular omphalopleure, isolated yolk mass, and allantois. This placenta is progressively replaced by chorioallantoic placenta during mid‐ to late‐development through depletion of the isolated yolk mass. The chorioallantoic placenta is anatomically specialized for maternal–fetal gas exchange, and its expansion during development reflects the growing needs of the fetus for gas exchange. The yolk sac placenta is morphologically unsuited for gas exchange, but may serve other functions in maternal‐fetal exchange.  相似文献   

18.
《Journal of morphology》2017,278(5):675-688
Ultrastructure of the placental tissues from redbelly watersnakes (Nerodia erythrogaster ) was analyzed during late pregnancy to provide insight into placental development and function. Examination of the chorioallantoic placenta with transmission electron microscopy reveals that chorionic and uterine epithelia are extremely attenuated but intact and that the eggshell membrane is vestigial and lacks a calcareous layer. These features minimize the interhemal diffusion distance across the placenta. Scanning electron microscopy reveals that fetal and maternal components of the placentas are richly vascularized by dense networks of capillaries. Although the yolk sac omphalopleure has largely been replaced by chorioallantois by late gestation, it retains patches of yolk droplets and regions of absorptive cells with microvilli and abundant mitochondria. Transmission electron microscopy reveals that yolk material is taken up for digestion by endodermal cells. As yolk is removed, allantoic capillaries invade to occupy positions just beneath the epithelium, forming regions of chorioallantoic placentation. Ultrastructural features indicate that the chorioallantoic placenta is specialized for gas exchange, while the omphalallantoic (“yolk sac”) placenta shows evidence of functions in yolk digestion and maternal‐fetal nutrient transfer. Placental features of this species are consistent with those of other thamnophines, and are evolutionarily convergent on snakes of other viviparous clades.  相似文献   

19.
Transmission electron microscopy was used to examine the ultrastructure of the allantoplacenta of garter snakes during the last half of gestation. This placenta occupies the dorsal hemisphere of the egg and is formed through apposition of the chorioallantois to the inner lining of the uterus. The uterine epithelium consists of flattened cells with short, irregular microvilli and others that bear cilia. The lamina propria is vascularized and its capillaries lie at the base of the uterine epithelial cells. The chorionic epithelium consists of a bilayer of squamous cells that are particularly thin superficial to the allantoic capillaries. Neither the chorionic epithelium nor the uterine epithelium undergoes erosion during development. Although a thin remnant of the shell membrane intervenes between fetal and maternal tissue at mid-gestation, it undergoes fragmentation by the end of gestation. Thus, uterine and chorionic epithelial are directly apposed in some regions of the allantoplacenta, forming continuous cellular boundaries at the placental interface. During development, capillaries proliferate in both the uterine and chorioallantoic tissues. By late gestation, the interhemal diffusion distance has thinned in some areas to less than 2 microm through attenuation of the uterine and chorionic epithelia. Morphologically, the allantoplacenta is well adapted for its function in gas exchange. However, the presence of cytoplasmic vesicles, ribosomal ER, and mitochondria in the chorionic and uterine epithelial cells are consistent with the possibility of additional forms of placental exchange.  相似文献   

20.
We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to describe the complete ontogeny of simple placentation and the development of both the yolk sac placentae and chorioallantoic placentae from nonreproductive through postparturition phases in the maternal uterine epithelium of the Australian skink, Eulamprus tympanum. We chose E. tympanum, a species with a simple, noninvasive placenta, and which we know, has little net nutrient uptake during gestation to develop hypotheses about placental function and to identify any difference between the oviparous and viviparous conditions. Placental differentiation into the chorioallantoic placenta and yolk sac placenta occurs from embryonic Stage 29; both placentae are simple structures without specialized features for materno/fetal connection. The uterine epithelial cells are not squamous as previously described by Claire Weekes, but are columnar, becoming increasingly attenuated because of the pressure of the impinging underlying capillaries as gestation progresses. When the females are nonreproductive, the luminal uterine surface is flat and the microvillous cells that contain electron-dense vesicles partly obscure the ciliated cells. As vitellogenesis progresses, the microvillous cells are less hypertrophied than in nonreproductive females. After ovulation and fertilization, there is no regional differentiation of the uterine epithelium around the circumference of the egg. The first differentiation, associated with the chorioallantoic placentae and yolk sac placentae, occurs at embryonic Stage 29 and continues through to Stage 39. As gestation proceeds, the uterine chorioallantoic placenta forms ridges, the microvillous cells become less hypertrophied, ciliated cells are less abundant, the underlying blood vessels increase in size, and the gland openings at the uterine surface are more apparent. In contrast, the yolk sac placenta has no particular folding with cells having a random orientation and where the microvillous cells remain hypertrophied throughout gestation. However, the ciliated cells become less abundant as gestation proceeds, as also seen in the chorioallantoic placenta. Secretory vesicles are visible in the uterine lumen. All placental differentiation and cell detail is lost at Stage 40, and the uterine structure has returned to the nonreproductive condition within 2 weeks. Circulating progesterone concentrations begin to rise during late vitellogenesis, peak at embryonic Stages 28-30, and decline after Stage 35 in the later stages of gestation. The coincidence between the time of oviposition and placental differentiation demonstrates a similarity during gestation in the uterus between oviparous and simple placental viviparous squamates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号