首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA double-strand breaks (DSBs) induced in the genome of higher eukaryotes by ionizing radiation (IR) are predominantly removed by two pathways of non-homologous end-joining (NHEJ) termed D-NHEJ and B-NHEJ. While D-NHEJ depends on the activities of the DNA-dependent protein kinase (DNA-PK) and DNA ligase IV/XRCC4/XLF, B-NHEJ utilizes, at least partly, DNA ligase III/XRCC1 and PARP-1. Using in vitro end-joining assays and protein fractionation protocols similar to those previously applied for the characterization of DNA ligase III as an end-joining factor, we identify here histone H1 as an additional putative NHEJ factor. H1 strongly enhances DNA-end joining and shifts the product spectrum from circles to multimers. While H1 enhances the DNA-end-joining activities of both DNA Ligase IV and DNA Ligase III, the effect on ligase III is significantly stronger. Histone H1 also enhances the activity of PARP-1. Since histone H1 has been shown to counteract D-NHEJ, these observations and the known functions of the protein identify it as a putative alignment factor operating preferentially within B-NHEJ.  相似文献   

2.
Backup pathways of NHEJ are suppressed by DNA-PK   总被引:1,自引:0,他引:1  
In cells of higher eukaryotes double strand breaks (DSBs) induced in the DNA after exposure to ionizing radiation (IR) are rapidly rejoined by a pathway of non-homologous end joining (NHEJ) that requires DNA dependent protein kinase (DNA-PK) and is therefore termed here D-NHEJ. When this pathway is chemically or genetically inactivated, cells still remove the majority of DSBs using an alternative, backup pathway operating independently of the RAD52 epistasis group of genes and with an order of magnitude slower kinetics (B-NHEJ). Here, we investigate the role of DNA-PK in the functional coordination of D-NHEJ and B-NHEJ using as a model end joining by cell extracts of restriction endonuclease linearized plasmid DNA. Although DNA end joining is inhibited by wortmannin, an inhibitor of DNA-PK, the degree of inhibition depends on the ratio between DNA ends and DNA-PK, suggesting that binding of inactive DNA-PK to DNA ends not only blocks processing by D-NHEJ, but also prevents the function of B-NHEJ. Residual end joining under conditions of incomplete inhibition, or in cells lacking DNA-PK, is attributed to the function of B-NHEJ operating on DNA ends free of DNA-PK. Thus, DNA-PK suppresses alternative pathways of end joining by efficiently binding DNA ends and shunting them to D-NHEJ.  相似文献   

3.
Wu W  Wang M  Wu W  Singh SK  Mussfeldt T  Iliakis G 《DNA Repair》2008,7(2):329-338
In higher eukaryotes DNA double strand breaks (DSBs) are repaired by homologous recombination (HRR) or non-homologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) utilizing Ligase III and PARP-1. The cell cycle dependence and coordination of these pathways is being actively investigated. We examine DSB repair in unperturbed G1 and G2 phase cells using mouse embryo fibroblast (MEF) mutants defective in D-NHEJ and/or HRR. WT and Rad54(-/-) MEFs repair DSBs with similar efficiency in G1 and G2 phase. LIG4(-/-), DNA-PKcs(-/-), and Ku70(-/-) MEFs show more pronounced repair defects in G1 than in G2. LIG4(-/-)/Rad54(-/-) MEFs repair DSBs as efficiently as LIG4(-/-) MEFs suggesting that the increased repair efficiency in G2 relies on enhanced function of B-NHEJ rather than HRR. In vivo and in vitro plasmid end joining assays confirm an enhanced function of B-NHEJ in G2. The results show a new and potentially important cell cycle regulation of B-NHEJ and generate a framework to investigate the mechanistic basis of HRR contribution to DSB repair.  相似文献   

4.
Beck BD  Lee SS  Williamson E  Hromas RA  Lee SH 《Biochemistry》2011,50(20):4360-4370
Metnase (SETMAR) is a SET-transposase fusion protein that promotes nonhomologous end joining (NHEJ) repair in humans. Although both SET and the transposase domains were necessary for its function in DSB repair, it is not clear what specific role Metnase plays in the NHEJ. In this study, we show that Metnase possesses a unique endonuclease activity that preferentially acts on ssDNA and ssDNA-overhang of a partial duplex DNA. Cell extracts lacking Metnase poorly supported DNA end joining, and addition of wt-Metnase to cell extracts lacking Metnase markedly stimulated DNA end joining, while a mutant (D483A) lacking endonuclease activity did not. Given that Metnase overexpression enhanced DNA end processing in vitro, our finding suggests a role for Metnase's endonuclease activity in promoting the joining of noncompatible ends.  相似文献   

5.
Yu X  Gabriel A 《Genetics》2003,163(3):843-856
Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Nonhomologous repair mechanisms have been relatively less well studied, despite their potential importance in generating chromosomal rearrangements. We have developed a Saccharomyces cerevisiae-based assay to identify and characterize homology-independent chromosomal rearrangements associated with repair of a unique DSB generated within an engineered URA3 gene. Approximately 1% of successfully repaired cells have accompanying chromosomal rearrangements consisting of large insertions, deletions, aberrant gene conversions, or other more complex changes. We have analyzed rearrangements in isogenic wild-type, rad52, yku80, and rad52 yku80 strains, to determine the types of events that occur in the presence or absence of these key repair proteins. Deletions were found in all strain backgrounds, but insertions were dependent upon the presence of Yku80p. A rare RAD52- and YKU80-independent form of deletion was present in all strains. These events were characterized by long one-sided deletions (up to 13 kb) and extensive imperfect overlapping sequences (7-22 bp) at the junctions. Our results demonstrate that the frequency and types of repair events depend on the specific genetic context. This approach can be applied to a number of problems associated with chromosome stability.  相似文献   

6.
Wang M  Wu W  Wu W  Rosidi B  Zhang L  Wang H  Iliakis G 《Nucleic acids research》2006,34(21):6170-6182
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.  相似文献   

7.
Sequential immunoprecipitation and isoelectric focusing analyses with monoclonal I-E-specific antibodies presented in this paper indicate the existence of multiple I-E molecules. In sequential immunoprecipitations with 13-4 (anti-Ia.7) and 17-3-3 (anti-Ia.22) monoclonal antibodies, 17-3-3 only partially cleared I-E molecules immunoprecipitated by 13-4. Similarly, 13-4 monoclonal antibody only partially cleared I-E molecules precipitated by 17-3-3 monoclonal antibody. These results suggested a minimum of three I-E molecules. One I-E molecule expresses both I3-4 and I7-3-3 determinants, a second I-E molecule expresses only 17-3-3 determinants, and a third I-E molecule expresses only 13-4 determinants. Isoelectric focusing analyses of I-E molcules immuno-precipitated by 13-4 and 17-3-3 showed differences in both Ae beta polypeptide chains and E alpha polypeptide chains. The sequential immunoprecipitation and isoelectric focusing analyses presented in this paper can be explained by a model in which there are at least two separate Ae genes being encoded within the I-A subregion and two separate E genes being encoded within the I-E subregion. The 17-3-3 monoclonal antibody would recognize a determinant on only one of two Ae beta polypeptide chains and the 13-4 monoclonal antibody would recognize a determinant on only one of two E polypeptide chains.Abbreviations used in this paper TAR torpedo acetylcholine receptor - MLR mixed lymphocyte reaction - GL-Phe poly(Glu55Lys36Phe9) - LPS lipopolysaccharide - SDS sodium dodecylsulfate - IEF isoelectric focusing  相似文献   

8.
9.
Biochemical evidence for an endocytically inactive population of lysosomes   总被引:1,自引:0,他引:1  
The peroxidase dependent, diaminobenzidine (DAB) density shift procedure was applied to the characterization of lysosomes from Chinese hamster ovary (CHO) cells. Peroxidase activity was localized in lysosomes by a 15-18 h internalization period. After treatment with DAB, the distribution of peroxidase activity in Percoll gradients was shifted, as a population, to a higher density. A bimodal distribution which included a low density population was observed for the native lysosomal enzyme beta-hexosaminidase after DAB treatment. A second lysosomal enzyme, alpha-fucosidase, was strongly inhibited by DAB treatment with the residual activity corresponding in distribution to the light beta-hexosaminidase population. The occurrence of a low density lysosomal population after the DAB procedure suggests the existence of an endocytically inactive lysosomal population in fibroblasts. Probable physiological candidates for such a population are discussed.  相似文献   

10.
Polyclonal antibodies were raised against synthetic peptides whose sequences were from unique regions of the bovine gamma-aminobutyrateA receptor alpha 1, alpha 2, and alpha 3 subunits. The anti-alpha 1 324-341, anti-Cys alpha 2 414-424, and anti-Cys alpha 3 454-467 antibodies all specifically immunoprecipitated [3H]flunitrazepam and [3H]muscimol binding activities in parallel from Na+ deoxycholate extracts of bovine cerebral cortex. The maximum number of benzodiazepine binding sites immunoprecipitated by each antibody in three brain regions, cerebral cortex, cerebellum, and hippocampus, was investigated. Differences were found for both the maximum number of sites immunoprecipitated by each antibody in one brain region and for the percentage of benzodiazepine binding sites immunoprecipitated by one specificity antibody between the different brain regions. Furthermore, it was found that co-immunoprecipitation with either anti-alpha 1 324-341, anti-Cys alpha 2 414-424, and anti-Cys alpha 3 454-467 or anti-alpha 1 324-341 and anti-Cys alpha 3 454-467 antibodies resulted in an increase in the percentage of benzodiazepine binding sites immunoprecipitated, the sum of which was equal to the percentages pelleted by the individual antibodies. These results demonstrate for the first time the existence in mammalian brain of gamma-aminobutyrateA receptor alpha subunit iso-oligomers.  相似文献   

11.
Biochemical engineering of natural product biosynthesis pathways   总被引:2,自引:0,他引:2  
Metabolic engineering of natural products is a science that has been built on the goals of traditional strain improvement with the availability of modern molecular biological technologies. In the past 15 years, the state of the art in metabolic engineering of natural products has advanced from the first proof-of-principle experiment based on minimal known genetics to a commonplace event using highly specific and sophisticated gene manipulation methods. With the availability of genes, host organisms, vector systems, and standard molecular biological tools, it is expected that metabolic engineering will be translated into industrial reality.  相似文献   

12.
13.
The two major isoforms of smoothelin (A and B) contain a calponin homology (CH) domain, colocalize with alpha-smooth muscle actin (alpha-SMA) in stress fibers and are only expressed in contractile smooth muscle cells (SMCs). Based on these findings, we hypothesized that smoothelins are involved in smooth muscle cell contraction, presumably via interaction with actin. The interaction between smoothelins and three different actin isoforms (alpha- and gamma-smooth muscle and alpha-skeletal actin [alpha-SKA]) was investigated using several in vitro assays. Smoothelin-B co-immunoprecipitated with alpha-smooth muscle actin from pig aorta extracts. In rat embryonic fibroblasts, transfected smoothelins-A and -B associated with stress fibers. In vitro dot blot assays, in which immobilized actin was overlaid with radio-labeled smoothelin, showed binding of smoothelin-A to actin filaments, but not to monomeric G-actin. A truncated smoothelin, containing the calponin homology domain, associated with stress fibers when transfected and bound to actin filaments in overlay, but to a lesser extent. ELISA results showed that the binding of smoothelin to actin has no significant isoform specificity. Our results indicate an interaction between smoothelin and actin filaments. Moreover, the calponin homology domain and its surrounding sequences appear to be sufficient to accomplish this interaction, although the presence of other domains is apparently necessary to facilitate and/or strengthen the binding to actin.  相似文献   

14.
The kinetochore is a complex structure whose function is absolutely essential. Unlike the centromere, the kinetochore at first appeared remarkably well conserved from yeast to humans, especially the microtubule-binding outer kinetochore. However, recent efforts towards biochemical reconstitution of diverse kinetochores challenge the notion of a similarly conserved architecture for the constitutively centromere-associated network of the inner kinetochore. This review briefly summarizes the evidence from comparative genomics for interspecific variability in inner kinetochore composition and focuses on novel biochemical evidence indicating that even homologous inner kinetochore protein complexes are put to different uses in different organisms.  相似文献   

15.
Biochemical specialization within Arabidopsis RNA silencing pathways   总被引:1,自引:0,他引:1  
Qi Y  Denli AM  Hannon GJ 《Molecular cell》2005,19(3):421-428
In plants, the RNA silencing machinery responds to numerous inputs, including viral infection, microRNAs, and endogenous siRNAs that may act both in trans and in cis. Additionally, the full spectrum of silencing outcomes has been demonstrated in plants, ranging from mRNA degradation to repression at the level of protein synthesis to chromatin remodeling. Genetic studies in Arabidopsis have indicated that individual response pathways are functionally compartmentalized. However, to date, no biochemical systems have been available to investigate the roles of specific proteins within silencing pathways or the effects of selected mutations on the biochemical activity of those components. Here, we describe the generation of Arabidopsis extracts that reproduce many aspects of RNA silencing reactions in vitro. We find that specific members of the Dicer and Argonaute families have distinct biochemical activities, which provides insight into their roles within RNA silencing pathways in Arabidopsis.  相似文献   

16.
Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1) S-adenosyl-L-methionine (AdoMet; SAM), which is a ubiquitous participant in numerous cellular reactions; 2) sterols: focusing on oxidosqualene cyclase that forms lanosterol in P carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14alpha-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3) synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.  相似文献   

17.
18.
Antineoplastic alkyl-lysophospholipids were found to exert a strong inhibitory effect on membranous or solubilized asialomucin-sialyltransferase (CMP-N-acetylneuraminate: D-galactosyl-glycoprotein N-acetylneuraminyltransferase, EC 2.4.99.1) activity. This inhibitory effect was dependent on the presence of the choline moiety in position 3 of the glycerol molecule, as well as on the presence of long ether-linked aliphatic side chain in position 1 and the absence of any large substituent in position 2. As an example, 1-octadecyl-2-O-methyl-glycero-3-phosphorylcholine acted as a mixed-type inhibitor. Such an inhibitory process on sialyltransferase activity might be an additional factor in the tumor cell destructive effect of alkyl-lysophospholipids.  相似文献   

19.
Two subpopulations of cardiac sarcoplasmic reticulum vesicles were resolved functionally, based on their sensitivities to the drug ryanodine. These two subpopulations of sarcoplasmic reticulum vesicles, termed ryanodine-sensitive and ryanodine-insensitive, were separated by preloading crude cardiac microsomes with Ca2+ oxalate in the presence of ATP, followed by sucrose density gradient centrifugation. Ryanodine-insensitive vesicles accumulated most of the Ca2+ oxalate during the preload, and constituted the densest subfraction recovered from the sucrose gradient. These ryanodine-insensitive vesicles exhibited the highest density of Ca2+ pumps, and accounted for 10 to 15% of the total protein in crude cardiac microsomes. Ryanodine-insensitive vesicles continued to transport substantial amounts of Ca2+ after isolation. Ryanodine-sensitive vesicles accumulated negligible Ca2+ during the preload, and were recovered from the lower density regions of the sucrose gradient. On a milligrams of protein basis, these vesicles were present in 7-fold excess over ryanodine-insensitive vesicles. Ryanodine-sensitive vesicles transported low amounts of Ca2+ under normal incubation conditions, but 3 X 10(-4) M ryanodine strikingly increased their Ca2+ uptake 5- to 10-fold. Ca2+ uptake by ryanodine-sensitive vesicles was uniquely regulated by Ca2+ ion concentration. Elevation of the ionized Ca2+ concentration from 2 to 4 microM increased Ca2+ uptake by these vesicles greater than 5-fold, but had no effect on their Ca2+-dependent ATPase activity. These ryanodine- and Ca2+ concentration-dependent effects were apparent for only ryanodine-sensitive vesicles. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed distinct differences in polypeptide staining between ryanodine-sensitive and ryanodine-insensitive vesicles, confirming by an independent method that the two populations of vesicles were different. These data provide the first biochemical evidence for functional and structural heterogeneity of cardiac sarcoplasmic reticulum vesicles.  相似文献   

20.
To test the hypothesis that all locus coeruleus projections are simultaneously activated when the locus coeruleus cells fire, the norepinephrine metabolite 3-methoxy-4-hydroxyphenethyleneglycol was assayed in four regions of the central nervous system innervated by the locus coeruleus after three treatments designed to increase locus coeruleus firing in rats. Electrical stimulation of the locus coeruleus, intraperitoneal piperoxan treatment, and electric footschock all significantly increased MHPG levels in rat cerebral cortex, cerebellum, hippocampus, and spinal cord. The magnitude of MHPG increase was greater after locus coeruleus stimulation than after footshock or piperoxan. No significant differences between increases in the above brain regions were found within each treatment group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号