首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therapeutic vaccination against cutaneous T cell lymphoma (CTCL) requires the characterization of cancer cell-specific CTL epitopes. Despite reported evidence for tumor-reactive cytotoxicity in CTCL patients, the nature of the recognized determinants remains elusive. The clonotypic TCR of CTCL cells is a promising candidate tumor-specific Ag. In this study, we report that the clonotypic and framework regions of the TCRs expressed in the malignant T cell clones of six CTCL patients contain multiple peptides with anchor residues fitting the patients' MHC class I molecules. We demonstrate that TCR peptide-specific T cells from the blood of healthy donors and patients can be induced to become cytotoxic effectors after repeated stimulation with 6 of 11 selected peptides with experimentally proven affinity for HLA-A*0201. Importantly, 4 of these 6 CTL lines reproducibly recognize and lyse autologous primary CTCL cells in MHC class I/CD8-dependent fashion. These tumoricidal CTL lines are directed against epitopes from V, hypervariable, and C regions of TCRalpha. We therefore conclude that recombined as well as V framework regions of the tumor cell TCRs contain predictable epitopes for CTL-mediated attack of CTCL cells. Our data further suggest that such peptides represent valuable tools for future anti-CTCL vaccination approaches.  相似文献   

2.
The idiotypes of B cell lymphomas represent tumor-specific antigens. T cell responses induced by idiotype vaccination in vivo are directed predominantly against CDR peptides, whereas in vitro T cells also recognize framework-derived epitopes. To investigate the mechanisms regulating the specificity of idiotype-specific T cells, BALB/c or B10.D2 mice were immunized with mature dendritic cells loaded with H-2Kd-restricted peptides from influenza hemagglutinin, or from shared (J region) or unique (CDR3) structures of the A20 lymphoma idiotype. Antigen-specific T cells were induced in vivo by the CDR3 and influenza epitopes, but not by the J peptide. Gene expression profiling of splenic regulatory T cells revealed vaccination-induced Treg activation and proliferation. Treg activity involved J epitope-dependent IL-10 secretion and functional suppression of peptide-specific effector T cells. Vaccination-induced in vivo proliferation of transgenic hemagglutinin-specific T cells was suppressed by co-immunization with the J peptide and was restored in CD25-depleted animals. In conclusion, Treg induced by a shared idiotype epitope can systemically suppress T cell responses against idiotype-derived and immunodominant foreign epitopes in vivo. The results imply that tumor vaccines should avoid epitopes expressed by normal cells in the draining lymph node to achieve optimal anti-tumor efficacy.  相似文献   

3.
Adoptive cell transfer (ACT) of in vitro expanded autologous tumor-infiltrating lymphocytes (TIL) has been shown to exert therapeutic efficacy in melanoma patients. We aimed to develop an ACT protocol based on tumor-specific T cells isolated from peripheral blood and in vitro expanded by Dynabeads? ClinExVivo?CD3/CD28. We show here that the addition of an in vitro restimulation step with relevant peptides prior to bead expansion dramatically increased the proportion of tumor-specific T cells in PBMC-cultures. Importantly, peptide-pulsed dendritic cells (DCs) as well as allogeneic tumor lysate-pulsed DCs from the DC vaccine preparation could be used with comparable efficiency to peptides for in vitro restimulation, to increase the tumor-specific T-cell response. Furthermore, we tested the use of different ratios and different types of Dynabeads? CD3/CD28 and CD3/CD28/CD137 T-cell expander, for optimized expansion of tumor-specific T cells. A ratio of 1:3 of Dynabeads? CD3/CD28 T-cell expander to T cells resulted in the maximum number of tumor-specific T cells. The addition of CD137 did not improve functionality or fold expansion. Both T-cell expansion systems could generate tumor-specific T cells that were both cytotoxic and effective cytokine producers upon antigen recognition. Dynabeads?-expanded T-cell cultures shows phenotypical characteristics of memory T cells with potential to migrate and expand in vivo. In addition, they possess longer telomeres compared to TIL cultures. Taken together, we demonstrate that in vitro restimulation of tumor-specific T cells prior to bead expansion is necessary to achieve high numbers of tumor-specific T cells. This is effective and easily applicable in combination with DC vaccination, by use of vaccine-generated DCs, either pulsed with peptide or tumor-lysate.  相似文献   

4.
Lymphomas express a tumor-specific antigen which can be targeted by cancer vaccination. We evaluated the ability of a new idiotype protein vaccine formulation to eradicate residual t(14;18)+ lymphoma cells in 20 patients in a homogeneous, chemotherapy-induced first clinical complete remission. All 11 patients with detectable translocations in their primary tumors had cells from the malignant clone detectable in their blood by PCR both at diagnosis and after chemotherapy, despite being in complete remission. However, 8 of 11 patients converted to lacking cells in their blood from the malignant clone detectable by PCR after vaccination and sustained their molecular remissions. Tumor-specific cytotoxic CD8+ and CD4+ T cells were uniformly found (19 of 20 patients), whereas antibodies were detected, but apparently were not required for molecular remission. Vaccination was thus associated with clearance of residual tumor cells from blood and long-term disease-free survival. The demonstration of molecular remissions, analysis of cytotoxic T lymphocytes against autologous tumor targets, and addition of granulocyte-monocyte colony-stimulating factor to the vaccine formulation provide principles relevant to the design of future clinical trials of other cancer vaccines administered in a minimal residual disease setting.  相似文献   

5.
Dendritic cells (DCs) are one of the most potent antigen-presenting cells (APCs) capable of activating immune responses. Different forms of tumor antigens have been used to load DCs to initiate tumor-specific immune responses. Heat shock proteins (HSPs) are considered natural adjuvants which have the ability to chaperone peptides associated with them presented efficiently by interaction with professional APCs through specific receptors. In the present study, we used HSP, gp96-peptide complexes, derived from human hepatocellular carcinoma (HCC) cells as antigens for pulsing DCs. We found that gp96-peptide complexes derived from HCC cells induced the maturation of DCs by enhancing expression of human leukocyte antigen class II, CD80, CD86, CD40, and CD83. The matured DCs stimulated a high level of autologous T cell proliferation and induced HCC specific cytotoxic T lymphocytes, which specifically killed HCC cells by a major histocompatability complex (MHC) class I restricted mechanism. These findings demonstrate that DCs pulsed with gp96-peptide complexes derived from HCC cells are effective in activating specific T cell responses against HCC cells.  相似文献   

6.
Survivin is a member of the inhibitors of apoptosis family and is overexpressed in many types of human cancers, making it an attractive target for T cell-based immunotherapeutic strategies. Recently, HLA-A2-binding peptides derived from the survivin protein were identified as capable of inducing specific T cell responses in cancer patients. Here we demonstrate that human survivin-specific CTLs generated from PBMC by stimulation with autologous dendritic cells transfected with survivin-RNA were cytotoxic for a range of hemopoietic malignant cell lines and primary tumor cells isolated from patients with acute myeloid leukemia. We also show that vaccination of mice with survivin-RNA-transfected dendritic cells leads to long term resistance to challenge by a survivin-expressing lymphoma, demonstrating the potential of survivin as a tumor rejection Ag. Our data provide evidence for the use of survivin as a target structure for immunotherapeutic strategies against hematological neoplasms.  相似文献   

7.
Tumor-infiltrating lymphocytes from mice bearing minor histoincompatible tumor cells in the anterior chamber (AC) or subconjunctival (SCon) space of the eye have been shown to contain large numbers of tumor-specific precursor cytotoxic T cells. Because SCon tumors eventually acquire directly cytotoxic, tumor-specific T cells and are rejected by their hosts and because AC tumors never acquire cytotoxic effector cells and are not rejected, we have examined tumor-infiltrating lymphocytes from both types of ocular tumors for the capacity to secrete lymphokines in response to in vitro stimulation with tumor cells. The results indicate that T "helper" cells were able to infiltrate both SCon and AC tumors. In the former, T cells capable of secreting IL-2 and IL-4 were found whereas in the latter only IL-2-secreting T cells were detected. These findings implicate a defect in local delivery of appropriate T cell help as the reason why AC tumors are not rejected. The failure of AC tumor-bearing mice to destroy their tumors correlates not only with defective delivery of local help but with a systemic inability to produce tumor-specific T cells that can secrete IL-2 and IL-4. Because these mice also generate down-regulatory T cells that suppress the expression of tumor-specific delayed hypersensitivity, they appear to have an immunologically mediated block in T helper cell differentiation which renders them unable to generate either T helper 1 or T helper 2 cells. This immunologic abnormality is discussed in terms of tumor rejection and the phenomenon of immunologic privilege.  相似文献   

8.

Background

CD1d-restricted invariant NKT (iNKT) cells are a subset of T lymphocytes endowed with innate effector functions that aid in the establishment of adaptive T and B cell immune responses. iNKT cells have been shown to play a spontaneous protective role against experimental tumors. Yet, the interplay between iNKT and tumor-specific T cells in cancer immune surveillance/editing has never been addressed. The transgenic adenocarcinoma of the mouse prostate (TRAMP) is a realistic model of spontaneous oncogenesis, in which the tumor-specific cytotoxic T cell (CTL) response undergoes full tolerance upon disease progression.

Principal Findings

We report here that lack of iNKT cells in TRAMP mice resulted in the appearance of more precocious and aggressive tumors that significantly reduced animal survival. TRAMP mice bearing or lacking iNKT cells responded similarly to a tumor-specific vaccination and developed tolerance to a tumor-associated antigen at comparable rate.

Conclusions

Hence, our data argue for a critical role of iNKT cells in the immune surveillance of carcinoma that is independent of tumor-specific CTL.  相似文献   

9.
Presence of the simian virus 40 (SV40) has recently been demonstrated in a relatively high percentage of human mesotheliomas and it is associated with the development of these malignancies in pleural cavities. Therefore, we have initiated a study to identify candidate peptides presented by the human HLA-A*0201 molecule for vaccination approaches against SV40 and monitoring of SV40 directed human immune responses. Initial screening of SV40 large T (Tag) domains required for transformation of cells for HLA-A*0201 binding motifs revealed ten possible binding peptides. Screening of these candidate peptides showed that seven of the ten peptides could bind and stabilize HLA-A*0201 molecules. In an in vitro immunization assay the two peptides with the highest binding affinity for HLA-A*0201, Tag aa 396-405 and aa 577-585, were tested for their ability to induce peptide specific cytotoxic T cells in two healthy donors. One donor developed cytotoxic T cells against Tag aa 396-405 and in T cell cultures of both donors Tag aa 577-585 specific T cells were initiated. The T cells against Tag aa 577-585 not only recognized and killed peptide pulsed cells, but, most importantly, SV40 transformed human mesothelial cells. This is the first demonstration of the induction of SV40 specific human cytotoxic T lymphocytes that recognize endogenously processed peptides from SV40. This peptide identification study opens the possibility to investigate immune responses against SV40 in mesothelioma patients and in individuals exposed to SV40.  相似文献   

10.
11.
Adaptive immune responses in which CD8(+) T cells recognize pathogen-derived peptides in the context of major histocompatibility complex class I molecules play a major role in the host defense against infection with intracellular pathogens. Cells infected with intracellular bacteria such as Listeria monocytogenes, Salmonella enterica serovar Typhimurium, or Mycobacterium tuberculosis are directly lysed by cytotoxic CD8(+) T cells. For this reason, current vaccines for intracellular pathogens, such as subunit vaccines or viable bacterial vaccines, aim to generate robust cytotoxic T-cell responses. In order to investigate the capacity of a herpes simplex virus type 1 (HSV-1) vector to induce strong cytotoxic effector cell responses and protection from infection with intracellular pathogens, we developed a replication-deficient, recombinant HSV-1 (rHSV-1) vaccine. We demonstrate in side-by-side comparison with DNA vaccination that rHSV-1 vaccination induces very strong CD8(+) effector T-cell responses. While both vaccines provided protection from infection with L. monocytogenes at low, but lethal doses, only rHSV-1 vaccines could protect from higher infectious doses; HSV-1 induced potent memory cytotoxic T lymphocytes that, upon challenge by pathogens, efficiently protected the animals. Despite the stimulation of relatively low humoral and CD4-T-cell responses, rHSV-1 vectors are strong candidates for future vaccine strategies that confer efficient protection from subsequent infection with intracellular bacteria.  相似文献   

12.
Antigens encoded by genes of the LAGE family, including LAGE-1 and NY-ESO-1, are of interest for cancer immunotherapy because they are tumor-specific and shared by tumors of different histological types. Several clinical trials are in progress with NY-ESO-1 peptides, protein, recombinant poxviruses, and dendritic cells pulsed with peptides. In this study, CD8 T lymphocytes from an individual without cancer were stimulated with dendritic cells infected with a recombinant avian poxvirus encoding a complete LAGE-1 protein. A CTL clone was isolated that recognized a new LAGE-1 peptide, ELVRRILSR, which corresponds to position 103–111 of the protein sequence. It is presented by HLA-A6801 molecules. When tumor cells expressing LAGE-1 were transfected with HLA-A68, they were lysed by the CTL clone, indicating that the peptide is processed in tumor cells. These results indicate that the LAGE-1.A68 peptide can be used for antitumoral vaccination. We observed also that specific T cells could be detected in a blood sample with a high sensitivity by using an A68/LAGE-1 fluorescent multimer.  相似文献   

13.
Chronic myelogenous leukemia (CML) is characterized by a reciprocal translocation leading to the Philadelphia chromosome. Two fusion genes are created by this translocation: bcr/abl and abl/bcr. The fusion regions of both translocation products are unique and strictly limited to leukemia cells, giving rise to potential tumor-specific antigens. Although several studies on the immunogenicity of peptides spanning the bcr/abl fusion region have been reported, little is known about the corresponding reciprocal translocation product abl/bcr. Here we report that synthetic peptides representing the fusion region of the abl/bcr forms a1bb3 and a1bb4 can be specifically recognized by HLA-A2-restricted cytotoxic T lymphocytes from healthy donors. Furthermore, HLA-matched a1bb3-expressing CML cells can be recognized by a1bb3-specific HLA-A2-restricted T cells, indicating natural processing and presentation of abl/bcr protein by leukemia cells. Moreover, a 19-mer peptide encompassing this class I-binding sequence also elicited a1bb3-specific class II-restricted T-cell responses. Thus, both class I- and class II-restricted T-cell responses can be stimulated in healthy donors by abl/bcr peptides in vitro. Because abl/bcr is expressed in the majority of CML patients, it may represent a highly leukemia-specific antigen with potential use in immunotherapy.  相似文献   

14.
We have attempted to develop an anti-human immunodeficiency virus (HIV) lipopeptide vaccine with several HIV-specific long peptides modified by C-terminal addition of a single palmitoyl chain. A mixture of six lipopeptides derived from regulatory or structural HIV-1 proteins (Nef, Gag, and Env) was prepared. A phase I study was conducted to evaluate immunogenicity and tolerance in lipopeptide vaccination of HIV-1-seronegative volunteers given three injections of either 100, 250, or 500 microg of each lipopeptide, with or without immunoadjuvant (QS21). This report analyzes in detail B- and T-cell responses induced by vaccination. The lipopeptide vaccine elicited strong and multiepitopic B- and T-cell responses. Vaccinated subjects produced specific immunoglobulin G antibodies that recognized the Nef and Gag proteins. After the third injection, helper CD4(+)-T-cell responses as well as specific cytotoxic CD8(+) T cells were also obtained. These CD8(+) T cells were able to recognize naturally processed viral proteins. Finally, specific gamma interferon-secreting CD8(+) T cells were also detected ex vivo.  相似文献   

15.
Tumor protein D52 (TPD52) is involved in transformation and metastasis and has been shown to be over-expressed in tumor cells compared to normal cells and tissues. Murine TPD52 (mD52) shares 86% protein identity with the human TPD52 orthologue (hD52). To study TPD52 protein as a target for active vaccination recombinant, mD52 was administered as a protein-based vaccine. Naïve mice were immunized with either mD52 protein and CpG/ODN as a molecular adjuvant or CpG/ODN alone. Two weeks following the final immunization, mice were challenged s.c. with syngeneic tumor cells that over-express mD52. Two distinct murine tumor cell lines were used for challenge in this model, mKSA and 3T3.mD52. Half of the mice immunized with mD52 and CpG/ODN rejected or delayed onset of mKSA s.c. tumor cell growth, and 40% of mice challenged with 3T3.mD52 rejected s.c. tumor growth, as well as the formation of spontaneous lethal lung metastases. Mice immunized with mD52 and CpG/ODN generated detectable mD52-specific IgG antibody responses indicating that mD52 protein vaccination induced an adaptive immune response. In addition, mice that rejected tumor challenge generated tumor-specific cytotoxic T lymphocytes’ responses. Importantly, microscopic and gross evaluation of organs from mD52 immunized mice revealed no evidence of autoimmunity as assessed by absence of T cell infiltration and absence of microscopic pathology. Together, these data demonstrate that mD52 vaccination induces an immune response that is capable of rejecting tumors that over-express mD52 without the induction of harmful autoimmunity.  相似文献   

16.
T lymphocytes from neonates proliferated significantly more than peripheral blood T lymphocytes from adults in autologous mixed lymphocyte reactions (AMLR). AMLR-activated cord, as compared to adult T lymphocytes, exerted significantly less nonspecific cytotoxic activity on PHA-stimulated adult mononuclear cells and Epstein-Barr virus-transformed target cells. The impaired generation of cytotoxicity of cord T cells was not corrected by Interleukin-2. Blood T lymphocytes from adults activated in AMLR synthesized a helper factor that supported PWM-induced proliferation and immunoglobulin production in both adult and cord B lymphocytes. In contrast, cord blood T lymphocytes failed to produce the helper factor for B lymphocytes. T cells from AMLR cultures established with neonatal lymphocytes showed suppressor activity, as assessed in PWM-stimulated immunoglobulin synthesis of adult peripheral-blood mononuclear cells, significantly higher than that exhibited by T cells from AMLR cultures performed with lymphocytes from adults. Finally, neonatal B lymphocytes could be activated to the production of IgM but not IgG by either adult AMLR-derived helper factor plus PWM or by Epstein-Barr virus, whereas adult B cells secreted both IgM and IgG under the same type of stimulation.  相似文献   

17.
The question of nonthymus-derived lymphocyte-mediated cytotoxicity was investigated with T and B cell subpopulations separated from the blood of normal donors. Mononuclear cells, T cells (E-RFC), and cell preparations enriched for B cells (non-E-RFC) by depletion of E-RFC gave negligible cytotoxic responses when incubated with either human melanoma or lung fibroblast target cells. In contrast, EAC and ZC rosetting cells separated from this same B-rich population consistently gave cytotoxic responses which were not dependent on either antibody or phagocytic cells. The cytotoxic effector cells appeared to be nonthymus-derived lymphocytes as characterized by C3 receptor rosetting and presence of surface membrane immunoglobulin on the majority of cells. In addition, supernatants from EAC-RFC cultures contained lymphotoxin (LT) activities which were eightfold higher than those of control E-RFC cultures. These findings suggest the existence of a nonthymus-derived cell cytotoxic effector mechanism, induced by the binding of membrane C3 receptors, which is independent of antibody.  相似文献   

18.
Immunogenic HER-2/neu peptides as tumor vaccines   总被引:6,自引:0,他引:6  
During the last decade, a large number of tumor-associated antigens (TAA) have been identified, which can be recognized by T cells. This has led to renewed interest in the use of active immunization as a modality for the treatment of cancer. HER-2/neu is a 185-KDa receptor-like glycoprotein that is overexpressed by a variety of tumors including breast, ovarian, lung, prostate and colorectal carcinomata. Several immunogenic HER-2/neu peptides recognized by cytotoxic T lymphocytes (CTL) or helper T lymphocytes (TH) have been identified thus far. Patients with HER-2/neu over-expressing cancers exhibit increased frequencies of peripheral blood T cells recognizing immunogenic HER-2/neu peptides. Various protocols for generating T cell-mediated immune responses specific for HER-2/neu peptides have been examined in pre-clinical models or in clinical trials. Vaccination studies in animals utilizing HER-2/neu peptides have been successful in eliminating tumor growth. In humans, however, although immunological responses have been detected against the peptides used for vaccination, no clinical responses have been described. Because HER-2/neu is a self-antigen, functional immune responses against it may be limited through tolerance mechanisms. Therefore, it would be interesting to determine whether abrogation of tolerance to HER-2/neu using appropriate adjuvants and/or peptide analogs may lead to the development of immune responses to HER-2/neu epitopes that can be of relevance to cancer immunotherapy. Vaccine preparations containing mixtures of HER-2/neu peptides and peptide from other tumor-related antigens might also enhance efficacy of therapeutic vaccination. This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004  相似文献   

19.
Foreign and self endogenous proteins can be processed and presented as peptides bound to class I and II MHC to CD8 or CD4-positive T cells. In the case of mutant tumor suppressor proteins, proteosomal processing of the mutant protein could occur either in the tumor cell or in an antigen-presenting cell to generate a variety of peptides that can be transported into the endoplasmic reticulum and loaded on the MHC. These peptides may induce tumor suppressor specific T cells in the presence of sufficient T help and costimulation. In human cancer, p53 is frequently found to be both somatically mutant and overexpressed. We and others are currently investigating the potential of peptide-induced cellular immunotherapy to induce cytotoxic T cells to peptides containing point mutant p53, or other oncogene products, thus potentially inducing tumor-specific cellular immunity. There are many potential prerequisites for successful immunotherapeutic targeting of intracellular antigens such as p53, including: (1) the protein must have a sufficient expression level; (2) it should be a candidate for proteolytic degradation and transport into the ER; (3) the tumor-specific epitope must have adequate affinity to the corresponding MHC restriction element; (4) the MHC complex must be expressed at sufficient levels on the cell surface to make the tumor-specific epitope accessible to T cells; and (5) the method of therapeutic immunization must effectively induce oncopeptide-specific cytotoxic T lymphocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号