首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Shal-type (Kv4) channels are expressed in a large variety of tissues, where they contribute to transient voltage-dependent K+ currents. Kv4 are the molecular correlate of the A-type current of neurons (I(SA)), the fast component of I(TO) current in the heart, and also of the oxygen-sensitive K+ current (K(O2)) in rabbit carotid body (CB) chemoreceptor cells. The enormous degree of variability in the physiological properties of Kv4-mediated currents can be attributable to the complexity of their regulation together with the large number of ancillary subunits and scaffolding proteins that associate with Kv4 proteins to modify their trafficking and their kinetic properties. Among those, KChIPs and DPPX proteins have been demonstrated to be integral components of I(SA) and I(TO) currents, as their coexpression with Kv4 subunits recapitulates the kinetics of native currents. Here, we explore the presence and functional contribution of DPPX to K(O2) currents in rabbit CB chemoreceptor cells by using DPPX functional knockdown with siRNA. Additionally, we investigate if the presence of DPPX endows Kv4 channels with new pharmacological properties, as we have observed anomalous tetraethylammonium (TEA) sensitivity in the native K(O2) currents. DPPX association with Kv4 channels induced an increased TEA sensitivity both in heterologous expression systems and in CB chemoreceptor cells. Moreover, TEA application to Kv4-DPPX heteromultimers leads to marked kinetic effects that could be explained by an augmented closed-state inactivation. Our data suggest that DPPX proteins are integral components of K(O2) currents, and that their association with Kv4 subunits modulate the pharmacological profile of the heteromultimers.  相似文献   

3.
H J Zhang  Y Liu  R D Zühlke    R H Joho 《Biophysical journal》1996,71(6):3083-3090
We report the use of cysteine-substituted mutants in conjunction with in situ oxidation to determine the physical proximity of a pair of engineered cysteines in the pore region of the voltage-gated K+ channel Kv2.1. We show that the newly introduced cysteine 1379C, located near the outer end of the narrow ion-conduction pathway, renders the K+ channel sensitive to oxidation by H2O2, but only if the native cysteine at position 394 in S6 remains in place. Conservative substitutions in S6 for cysteine 394 abolish H2O2 sensitivity in the Kv2.1 mutant 1379C. Comparative immunoblot analysis of wild-type and 1379C Kv2.1-expressing HEK293 cells demonstrates the presence of subunit dimers for 1379C, but not for wild-type Kv2.1. At the single-channel level, the probability of opening of 1379C channels, unlike wild-type, is reduced in the presence of H2O2; however, oxidation of 1379C does not alter unit current. These findings imply that cysteine 379, located near the outer end of the narrow ion-conduction pathway, participates in disulfide bridge formation, locking the channel in a nonconducting state from which it cannot undergo conformational transitions required for opening.  相似文献   

4.
Voltage-gated K(+) (Kv) channels are important in the regulation of pulmonary vascular function having both physiological and pathophysiological implications. The pulmonary vasculature is essential for reoxygenation of the blood, supplying oxygen for cellular respiration. Mitochondria have been proposed as the major oxygen-sensing organelles in the pulmonary vasculature. Using electrophysiological techniques and immunofluorescence, an interaction of the mitochondria with Kv channels was investigated. Inhibitors, blocking the mitochondrial electron transport chain at different complexes, were shown to have a dual effect on Kv currents in freshly isolated rat pulmonary arterial smooth muscle cells (PASMCs). These dual effects comprised an enhancement of Kv current in a negative potential range (manifested as a 5- to 14-mV shift in the Kv activation to more negative membrane voltages) with a decrease in current amplitude at positive potentials. Such effects were most prominent as a result of inhibition of Complex III by antimycin A. Investigation of the mechanism of antimycin A-mediated effects on Kv channel currents (I(Kv)) revealed the presence of a mitochondria-mediated Mg(2+) and ATP-dependent regulation of Kv channels in PASMCs, which exists in addition to that currently proposed to be caused by changes in intracellular reactive oxygen species.  相似文献   

5.
Dopamine (DA) release in the CNS is critical for motor control and motivated behaviors. Dysfunction of its regulation is thought to be implicated in drug abuse and in diseases such as schizophrenia and Parkinson's. Although various potassium channels located in the somatodendritic compartment of DA neurons such as G-protein-gated inward rectifying potassium channels (GIRK) have been shown to regulate cell firing and DA release, little is presently known about the role of potassium channels localized in the axon terminals of these neurons. Here we used fast-scan cyclic voltammetry to study electrically-evoked DA release in rat dorsal striatal brain slices. We find that although G-protein-gated inward rectifying (GIRK) and ATP-gated (K(ATP)) potassium channels play only a minor role, voltage-gated potassium channels of the Kv1 family play a major role in regulating DA release. The use of Kv subtype-selective blockers confirmed a role for Kv1.2, 1.3 and 1.6, but not Kv1.1, 3.1, 3.2, 3.4 and 4.2. Interestingly, Kv1 blockers also reduced the ability of quinpirole, a D2 receptor agonist, to inhibit evoked DA overflow, thus suggesting that Kv1 channels also regulate presynaptic D2 receptor function. Our work identifies Kv1 potassium channels as key regulators of DA release in the striatum.  相似文献   

6.
Activation by diazoxide and inhibition by 5-hydroxydecanoate are the hallmarks of mitochondrial ATP-sensitive K+ (K(ATP)) channels. Opening of these channels is thought to trigger cytoprotection (preconditioning) through the generation of reactive oxygen species. However, we found that diazoxide-induced oxidation of the widely used reactive oxygen species indicator 2',7'-dichlorodihydrofluorescein in isolated liver and heart mitochondria was observed in the absence of ATP or K+ and therefore independent of K(ATP) channels. The response was blocked by stigmatellin, implying a role for the cytochrome bc1 complex (complex III). Diazoxide, though, did not increase hydrogen peroxide (H2O2) production (quantitatively measured with Amplex Red) in intact mitochondria, submitochondrial particles, or purified cytochrome bc1 complex. We confirmed that diazoxide inhibited succinate oxidation, but it also weakly stimulated state 4 respiration even in K+-free buffer, excluding a role for K(ATP) channels. Furthermore, we have shown previously that 5-hydroxydecanoate is partially metabolized, and we hypothesized that fatty acid metabolism may explain the ability of this putative mitochondrial K(ATP) channel blocker to inhibit diazoxide-induced flavoprotein fluorescence, commonly used as an assay of K(ATP) channel activity. Indeed, consistent with our hypothesis, we found that decanoate inhibited diazoxide-induced flavoprotein oxidation. Taken together, our data question the "mitochondrial K(ATP) channel" hypothesis of preconditioning. Diazoxide did not evoke superoxide (which dismutates to H2O2) from the respiratory chain by a direct mechanism, and the stimulatory effects of this compound on mitochondrial respiration and 2',7'-dichlorodihydrofluorescein oxidation were not due to the opening of K(ATP) channels.  相似文献   

7.
Cell shrinkage is an incipient hallmark of apoptosis in a variety of cell types. The apoptotic volume decrease has been demonstrated to attribute, in part, to K+ efflux; blockade of plasmalemmal K+ channels inhibits the apoptotic volume decrease and attenuates apoptosis. Using combined approaches of gene transfection, single-cell PCR, patch clamp, and fluorescence microscopy, we examined whether overexpression of Bcl-2, an anti-apoptotic oncoprotein, inhibits apoptosis in pulmonary artery smooth muscle cells (PASMC) by diminishing the activity of voltage-gated K+ (Kv) channels. A human bcl-2 gene was infected into primary cultured rat PASMC using an adenoviral vector. Overexpression of Bcl-2 significantly decreased the amplitude and current density of Kv currents (I(Kv)). In contrast, the apoptosis inducer staurosporine (ST) enhanced I(Kv). In bcl-2-infected cells, however, the ST-induced increase in I(Kv) was completely abolished, and the ST-induced apoptosis was significantly inhibited compared with cells infected with an empty adenovirus (-bcl-2). Blockade of Kv channels in control cells (-bcl-2) by 4-aminopyridine also inhibited the ST-induced increase in I(Kv) and apoptosis. Furthermore, overexpression of Bcl-2 accelerated the inactivation of I(Kv) and downregulated the mRNA expression of the pore-forming Kv channel alpha-subunits (Kv1.1, Kv1.5, and Kv2.1). These results suggest that inhibition of Kv channel activity may serve as an additional mechanism involved in the Bcl-2-mediated anti-apoptotic effect on vascular smooth muscle cells.  相似文献   

8.
Modulation of K+ channels by hydrogen peroxide.   总被引:7,自引:0,他引:7  
External application of hydrogen peroxide (H2O2) was found to inhibit the time-dependent fast inactivation process of three cloned voltage-gated K+ channels expressed in Xenopus oocytes: KShIIIC, KShIIID and HukII. As expected from kinetic models where some channels are still opening while a significant fraction of channels is already inactivated there was a large increase in current magnitude concomitant to inactivation block. The channels otherwise functioned normally. The effects of H2O2 were specific (other cloned voltage-gated K+ channels were not affected), and reversible, the currents returned to normal upon removal of the H2O2. H2O2 is produced during normal metabolism; it could act as a modulator of excitability through effects on K+ channels if effective local concentrations are reached in neuronal regions close to the channel. KShIIIC and KShIIID currents are very similar to an O2-sensitive K+ current present in type I cells of the carotid body which is believed to underlie the modulation of excitability of these cells by changes in arterial O2 pressure. H2O2 has been proposed as an intermediary between O2 and cellular response in the carotid body; our results provide support for this model.  相似文献   

9.
External tetraethylammonium (TEA+) blocked currents through Kv1.1 channels in a voltage-independent manner between 0 and 100 mV. Lowering extracellular pH (pHo) increased the Kd for TEA+ block. A histidine at position 355 in the Kv1.1 channel protein (homologous to Shaker 425) was responsible for this pH-dependent reduction of TEA+ sensitivity, since the TEA+ effect became independent of pHo after chemical modification of the Kv1.1 channel at H355 and in the H355G and H355K mutant Kv1.1 channels. The Kd values for TEA+ block of the two mutant channels (0.34 +/- 0.06 mM, n = 7 and 0.84 +/- 0. 09 mM, n = 13, respectively) were as expected for a vestibule containing either no or a total of four positive charges at position 355. In addition, the pH-dependent TEA+ effect in the wt Kv1.1 channel was sensitive to the ionic strength of the solution. All our observations are consistent with the idea that lowering pHo increased protonation of H355. This increase in positive charge at H355 will repel TEA+ electrostatically, resulting in a reduction of the effective [TEA+]o at the receptor site. From this reduction we can estimate the distance between TEA+ and each of the four histidines at position 355 to be approximately 10 A, assuming fourfold symmetry of the channel and assuming that TEA+ binds in the central axis of the pore. This determination of the dimensions of the outer vestibule of Kv1.1 channels confirms and extends earlier reports on K+ channels using crystal structure data as well as peptide toxin/channel interactions and points out a striking similarity between vestibules of Kv1.1 and KcsA channels.  相似文献   

10.
Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K(+) channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K(+) current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gβγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.  相似文献   

11.
12.
Mitochondria generate reactive oxygen species (ROS) dependent on substrate conditions, O(2) concentration, redox state, and activity of the mitochondrial complexes. It is well known that the FADH(2)-linked substrate succinate induces reverse electron flow to complex I of the electron transport chain and that this process generates superoxide (O(2)(*-)); these effects are blocked by the complex I blocker rotenone. We demonstrated recently that succinate + rotenone-dependent H(2)O(2) production in isolated mitochondria increased mildly on activation of the putative big mitochondrial Ca(2+)-sensitive K(+) channel (mtBK(Ca)) by low concentrations of 1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). In the present study we examined effects of NS-1619 on mitochondrial O(2) consumption, membrane potential (DeltaPsi(m)), H(2)O(2) release rates, and redox state in isolated guinea pig heart mitochondria respiring on succinate but without rotenone. NS-1619 (30 microM) increased state 2 and state 4 respiration by 26 +/- 4% and 14 +/- 4%, respectively; this increase was abolished by the BK(Ca) channel blocker paxilline (5 microM). Paxilline alone had no effect on respiration. NS-1619 did not alter DeltaPsi(m) or redox state but decreased H(2)O(2) production by 73% vs. control; this effect was incompletely inhibited by paxilline. We conclude that under substrate conditions that allow reverse electron flow, matrix K(+) influx through mtBK(Ca) channels reduces mitochondrial H(2)O(2) production by accelerating forward electron flow. Our prior study showed that NS-1619 induced an increase in H(2)O(2) production with blocked reverse electron flow. The present results suggest that NS-1619-induced matrix K(+) influx increases forward electron flow despite the high reverse electron flow, and emphasize the importance of substrate conditions on interpretation of effects on mitochondrial bioenergetics.  相似文献   

13.
Kv4 channels mediate the somatodendritic A-type K+ current (I(SA)) in neurons. The availability of functional Kv4 channels is dynamically regulated by the membrane potential such that subthreshold depolarizations render Kv4 channels unavailable. The underlying process involves inactivation from closed states along the main activation pathway. Although classical inactivation mechanisms such as N- and P/C-type inactivation have been excluded, a clear understanding of closed-state inactivation in Kv4 channels has remained elusive. This is in part due to the lack of crucial information about the interactions between gating charge (Q) movement, activation, and inactivation. To overcome this limitation, we engineered a charybdotoxin (CTX)-sensitive Kv4.2 channel, which enabled us to obtain the first measurements of Kv4.2 gating currents after blocking K+ conduction with CTX (Dougherty and Covarrubias. 2006J. Gen. Physiol. 128:745-753). Here, we exploited this approach further to investigate the mechanism that links closed-state inactivation to slow Q-immobilization in Kv4 channels. The main observations revealed profound Q-immobilization at steady-state over a range of hyperpolarized voltages (-110 to -75 mV). Depolarization in this range moves <5% of the observable Q associated with activation and is insufficient to open the channels significantly. The kinetics and voltage dependence of Q-immobilization and ionic current inactivation between -153 and -47 mV are similar and independent of the channel's proximal N-terminal region (residues 2-40). A coupled state diagram of closed-state inactivation with a quasi-absorbing inactivated state explained the results from ionic and gating current experiments globally. We conclude that Q-immobilization and closed-state inactivation at hyperpolarized voltages are two manifestations of the same process in Kv4.2 channels, and propose that inactivation in the absence of N- and P/C-type mechanisms involves desensitization to voltage resulting from a slow conformational change of the voltage sensors, which renders the channel's main activation gate reluctant to open.  相似文献   

14.
The hypoxia-induced membrane depolarization and subsequent constriction of small resistance pulmonary arteries occurs, in part, via inhibition of vascular smooth muscle cell voltage-gated K+ (KV) channels open at the resting membrane potential. Pulmonary arterial smooth muscle cell KV channel expression, antibody-based dissection of the pulmonary arterial smooth muscle cell K+ current, and the O2 sensitivity of cloned KV channels expressed in heterologous expression systems have all been examined to identify the molecular components of the pulmonary arterial O2-sensitive KV current. Likely components include Kv2.1/Kv9.3 and Kv1.2/Kv1.5 heteromeric channels and the Kv3.1b alpha-subunit. Although the mechanism of KV channel inhibition by hypoxia is unknown, it appears that KV alpha-subunits do not sense O2 directly. Rather, they are most likely inhibited through interaction with an unidentified O2 sensor and/or beta-subunit. This review summarizes the role of KV channels in hypoxic pulmonary vasoconstriction, the recent progress toward the identification of KV channel subunits involved in this response, and the possible mechanisms of KV channel regulation by hypoxia.  相似文献   

15.
Voltage-gated K+ (KV) channels are protein complexes composed of ion-conducting integral membrane alpha subunits and cytoplasmic modulatory beta subunits. The differential expression and association of alpha and beta subunits seems to contribute significantly to the complexity and heterogeneity of KV channels in excitable cells, and their functional expression in heterologous systems provides a tool to study their regulation at a molecular level. Here, we have studied the effects of Kvbeta1.2 coexpression on the properties of Shaker and Kv4.2 KV channel alpha subunits, which encode rapidly inactivating A-type K+ currents, in transfected HEK293 cells. We found that Kvbeta1.2 functionally associates with these two alpha subunits, as well as with the endogenous KV channels of HEK293 cells, to modulate different properties of the heteromultimers. Kvbeta1.2 accelerates the rate of inactivation of the Shaker currents, as previously described, increases significantly the amplitude of the endogenous currents, and confers sensitivity to redox modulation and hypoxia to Kv4.2 channels. Upon association with Kvbeta1.2, Kv4.2 can be modified by DTT (1,4 dithiothreitol) and DTDP (2,2'-dithiodipyridine), which also modulate the low pO2 response of the Kv4.2+beta channels. However, the physiological reducing agent GSH (reduced glutathione) did not mimic the effects of DTT. Finally, hypoxic inhibition of Kv4.2+beta currents can be reverted by 70% in the presence of carbon monoxide and remains in cell-free patches, suggesting the presence of a hemoproteic O2 sensor in HEK293 cells and a membrane-delimited mechanism at the origin of hypoxic responses. We conclude that beta subunits can modulate different properties upon association with different KV channel subfamilies; of potential relevance to understanding the molecular basis of low pO2 sensitivity in native tissues is the here described acquisition of the ability of Kv4. 2+beta channels to respond to hypoxia.  相似文献   

16.
Kv4 channels represent the main class of brain A-type K+ channels that operate in the subthreshold range of membrane potentials (Serodio, P., E. Vega-Saenz de Miera, and B. Rudy. 1996. J. Neurophysiol. 75:2174- 2179), and their function depends critically on inactivation gating. A previous study suggested that the cytoplasmic NH2- and COOH-terminal domains of Kv4.1 channels act in concert to determine the fast phase of the complex time course of macroscopic inactivation (Jerng, H.H., and M. Covarrubias. 1997. Biophys. J. 72:163-174). To investigate the structural basis of slow inactivation gating of these channels, we examined internal residues that may affect the mutually exclusive relationship between inactivation and closed-state blockade by 4-aminopyridine (4-AP) (Campbell, D.L., Y. Qu, R.L. Rasmussen, and H.C. Strauss. 1993. J. Gen. Physiol. 101:603-626; Shieh, C.-C., and G.E. Kirsch. 1994. Biophys. J. 67:2316-2325). A double mutation V[404,406]I in the distal section of the S6 region of the protein drastically slowed channel inactivation and deactivation, and significantly reduced the blockade by 4-AP. In addition, recovery from inactivation was slightly faster, but the pore properties were not significantly affected. Consistent with a more stable open state and disrupted closed state inactivation, V[404,406]I also caused hyperpolarizing and depolarizing shifts of the peak conductance-voltage curve ( approximately 5 mV) and the prepulse inactivation curve (>10 mV), respectively. By contrast, the analogous mutations (V[556,558]I) in a K+ channel that undergoes N- and C-type inactivation (Kv1.4) did not affect macroscopic inactivation but dramatically slowed deactivation and recovery from inactivation, and eliminated open-channel blockade by 4-AP. Mutation of a Kv4-specific residue in the S4-S5 loop (C322S) of Kv4.1 also altered gating and 4-AP sensitivity in a manner that closely resembles the effects of V[404, 406]I. However, this mutant did not exhibit disrupted closed state inactivation. A kinetic model that assumes coupling between channel closing and inactivation at depolarized membrane potentials accounts for the results. We propose that components of the pore's internal vestibule control both closing and inactivation in Kv4 K+ channels.  相似文献   

17.
Oxygen-sensitive K(+) channels are important elements in the cellular response to hypoxia. Although much progress has been made in identifying their molecular composition, the structural components associated to their O(2)-sensitivity are not yet understood. Recombinant Kv1.2 currents expressed in Xenopus oocytes are inhibited by a decrease in O(2) availability. On the contrary, heterologous Kv2.1 channels are O(2)-insensitive. To elucidate the protein segment responsible for the O(2)-sensitivity of Kv1.2 channels, we analyzed the response to anoxia of Kv1.2/Kv2.1 chimeric channels. Expression of chimeric Kv2.1 channels each containing the S4, the S1-S3 or the S6-COOH segments of Kv1.2 polypeptide resulted in a K(+) current insensitive to anoxia. In contrast, transferring the S5-S6 segment of Kv1.2 into Kv2.1 produced an O(2)-sensitive K(+) current. Finally, mutating a redox-sensitive methionine residue (M380) of Kv1.2 polypeptide did not affect O(2)-sensitivity. Thus, the pore and its surrounding regions of Kv1.2 polypeptide confer its hypoxic inhibition. This response is independent on the redox modulation of methionine residues in this protein segment.  相似文献   

18.
Mammalian voltage-gated K+ channels are assemblies of pore-forming alpha-subunits and modulating beta-subunits. To operate correctly, Kv4 alpha-subunits in the heart and central nervous system require recently identified beta-subunits of the neuronal calcium sensing protein family called K+ channel-interacting proteins (KChIPs). Here, Kv4.2.KChIP2 channels are purified, integrity of isolated complexes confirmed, molar ratio of the subunits determined, and subunit valence established. A complex has 4 subunits of each type, a stoichiometry expected for other channels employing neuronal calcium sensing beta-subunits.  相似文献   

19.
KCNQ2 and KCNQ3 subunits encode for the muscarinic-regulated current (I(KM)), a sub-threshold voltage-dependent K+ current regulating neuronal excitability. In this study, we have investigated the involvement of I(KM) in dopamine (DA) release from rat striatal synaptosomes evoked by elevated extracellular K+ concentrations ([K+]e) and by muscarinic receptor activation. [3H]dopamine ([3H]DA) release triggered by 9 mmol/L [K+]e was inhibited by the I(KM) activator retigabine (0.01-30 micromol/L; Emax = 54.80 +/- 3.85%; IC50 = 0.50 +/- 0.36 micromol/L). The I(KM) blockers tetraethylammonium (0.1-3 mmol/L) and XE-991 (0.1-30 micromol/L) enhanced K+-evoked [3H]DA release and prevented retigabine-induced inhibition of depolarization-evoked [3H]DA release. Retigabine-induced inhibition of K+-evoked [3H]DA release was also abolished by synaptosomal entrapment of blocking anti-KCNQ2 polyclonal antibodies, an effect prevented by antibody pre-absorption with the KCNQ2 immunizing peptide. Furthermore, the cholinergic agonist oxotremorine (OXO) (1-300 micromol/L) potentiated 9 mmol/L [K+]e-evoked [3H]DA release (Emax = 155 +/- 9.50%; EC50 = 25 +/- 1.80 micromol/L). OXO (100 micromol/L)-induced [3H]DA release enhancement was competitively inhibited by pirenzepine (1-10 nmol/L) and abolished by the M3-preferring antagonist 4-diphenylacetoxy N-methylpiperidine methiodide (1 micromol/L), but was unaffected by the M1-selective antagonist MT-7 (10-100 nmol/L) or by Pertussis toxin (1.5-3 microg/mL), which uncouples M2- and M4-mediated responses. Finally, OXO-induced potentiation of depolarization-induced [3H]DA release was not additive to that produced by XE-991 (10 micromol/L), was unaffected by retigabine (10 micromol/L), and was abolished by synaptosomal entrapment of anti-KCNQ2 antibodies. Collectively, these findings indicate that, in rat striatal nerve endings, I(KM) channels containing KCNQ2 subunits regulate depolarization-induced DA release and that I(KM) suppression is involved in the reinforcement of depolarization-induced DA release triggered by the activation of pre-synaptic muscarinic heteroreceptors.  相似文献   

20.
K+ activates many inward rectifier and voltage-gated K+ channels. In each case, an increase in K+ current through the channel can occur despite a reduced driving force. We have investigated the molecular mechanism of K+ activation of the inward rectifier K+ channel, Kir3.1/Kir3.4, and the voltage-gated K+ channel, Kv1.4. In the Kir3.1/Kir3.4 channel, mutation of an extracellular arginine residue, R155, in the Kir3.4 subunit markedly reduced K+ activation of the channel. The same mutation also abolished Mg2+ block of the channel. Mutation of the equivalent residue in Kv1.4 (K532) abolished K+ activation as well as C-type inactivation of the Kv1.4 channel. Thus, whereas C-type inactivation is a collapse of the selectivity filter, K+ activation could be an opening of the selectivity filter. K+ activation of the Kv1.4 channel was enhanced by acidic pH. Mutation of an extracellular histidine residue, H508, that mediates the inhibitory effect of protons on Kv1.4 current, abolished both K+ activation and the enhancement of K+ activation at acidic pH. These results suggest that the extracellular positive charges in both the Kir3.1/Kir3.4 and the Kv1.4 channels act as "guards" and regulate access of K+ to the selectivity filter and, thus, the open probability of the selectivity filter. Furthermore, these data suggest that, at acidic pH, protonation of H508 inhibits current through the Kv1.4 channel by decreasing K+ access to the selectivity filter, thus favoring the collapse of the selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号