首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.  相似文献   

3.
4.
BACKGROUND: NKX2-3 is associated with inflammatory bowel disease (IBD). NKX2-3 is expressed in microvascular endothelial cells and the muscularis mucosa of the gastrointestinal tract. Human intestinal microvascular endothelial cells (HIMECs) are actively involved in the pathogenesis of IBD and IBD-associated microvascular dysfunction. To understand the cellular function of NKX2-3 and its potential role underlying IBD pathogenesis, we investigated the genes regulated by NKX2-3 in HIMEC using cDNA microarray. METHODOLOGY/PRINCIPAL FINDINGS: NKX2-3 expression was suppressed by shRNA in two HIMEC lines and gene expression was profiled by cDNA microarray. Pathway Analysis was used to identify gene networks according to biological functions and associated pathways. Validation of microarray and genes expression in intestinal tissues was assessed by RT-PCR. NKX2-3 regulated genes are involved in immune and inflammatory response, cell proliferation and growth, metabolic process, and angiogenesis. Several inflammation and angiogenesis related signaling pathways that play important roles in IBD were regulated by NKX2-3, including endothelin-1 and VEGF-PI3K/AKT-eNOS. Expression levels of NKX2-3, VEGFA, PI3K, AKT, and eNOS are increased in intestinal tissues from IBD patients and expression levels of EDN1 are decreased in intestinal tissues from IBD patients. These results demonstrated the important roles of NKX2-3, VEGF, PI3K, AKT, eNOS, and EDN1 in IBD pathogenesis. Correlation analysis showed a positive correlation between mRNA expression of NKX2-3 and VEGFA and a negative correlation between mRNA expression of NKX2-3 and EDN1 in intestinal tissues from IBD patients. CONCLUSION/RELEVANCE: NKX2-3 may play an important role in IBD pathogenesis by regulating endothelin-1 and VEGF signaling in HIMECs.  相似文献   

5.
The pathogenesis of crystal nephropathy involves deposition of intratubular crystals, tubular obstruction and cell death. The deposition of 8-dihydroxyadenine (DHA) crystals within kidney tubules, for instance, is caused by a hereditary deficiency of adenine phosphoribosyl transferase in humans or adenine overload in preclinical models. However, the downstream pathobiological patterns of tubular cell attrition in adenine/DHA-induced nephropathy remain poorly understood. In this study, we investigated: (i) the modes of adenine-induced tubular cell death in an experimental rat model and in human primary proximal tubular epithelial cells (PTEC); and (ii) the therapeutic effect of the flavonoid baicalein as a novel cell death inhibitor. In a rat model of adenine diet-induced crystal nephropathy, significantly elevated levels of tubular iron deposition and lipid peroxidation (4-hydroxynonenal; 4-HNE) were detected. This phenotype is indicative of ferroptosis, a novel form of regulated necrosis. In cultures of human primary PTEC, adenine overload-induced significantly increased mitochondrial superoxide levels, mitochondrial depolarisation, DNA damage and necrotic cell death compared with untreated PTEC. Molecular interrogation of adenine-stimulated PTEC revealed a significant reduction in the lipid repair enzyme glutathione peroxidase 4 (GPX4) and the significant increase in 4-HNE compared with untreated PTEC, supporting the concept of ferroptotic cell death. Moreover, baicalein treatment inhibited ferroptosis in adenine-stimulated PTEC by selectively modulating the mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) and thus, suppressing mitochondrial superoxide production and DNA damage. These data identify ferroptosis as the primary pattern of PTEC necrosis in adenine-induced nephropathy and establish baicalein as a potential therapeutic tool for the clinical management of ferroptosis-associated crystal nephropathies (e.g., DHA nephropathy, oxalate nephropathy).Subject terms: Mechanisms of disease, Interstitial nephritis, Experimental models of disease

  相似文献   

6.
Hepatocyte growth factor (HGF)-induced tubulogenesis has been demonstrated with renal epithelial cell lines grown in collagen gels but not with primary cultured renal proximal tubular epithelial cells (RPTEs). We show that HGF selectively induces proliferation and branching morphogenesis of primary cultured rat RPTEs. Additional growth factors including fibroblast growth factor (FGF)-1, epidermal growth factor (EGF), FGF-7, or insulin-like growth factor-1 (IGF-1) did not selectively induce tubulogenesis. However, when administered in combination, these factors initiated branching morphogenesis comparable to HGF alone and greatly augmented HGF-induced proliferation and branching. Microscopic analysis revealed that branching RPTEs were undergoing tubulogenesis and formed a polarized epithelium. TGF-β1 blocked HGF- or growth factor cocktail (GFC; HGF, FGF-1, EGF, IGF-1)-induced proliferation and branching morphogenesis. Adding TGF-β1 after GFC-induced tubulogenesis had occurred caused a progressive regression of the tubular structures, a response associated with an increase in apoptosis of the RPTEs. Primary cultured RPTEs are capable of undergoing HGF-induced tubulogenesis. Unlike cell lines, combinations of growth factors differentially augment the response. J. Cell. Physiol. 180:81–90, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
An epithelial cell line from pig kidney (LLC-PK1) with properties of proximal tubular cells can be maintained indefinitely in hormone-supplemented serum-free medium. Continuous growth requires the presence of seven factors: transferrin, insulin, selenium, hydrocortisone, triiodothyronine, vasopressin, and cholesterol. The hormone-defined medium (a) supports growth of LLC-PK1 cells at a rate of approaching that observed in serum-supplemented medium; (b) allows vectorial transepithelial salt and fluid transport as measured by hemicyst formation; and (c) influences cell morphology. The vasopressin dependency for growth and morphology can be partially replaced by isobutylmethylxanthine or dibutyryl cyclic AMP. The medium has been used to isolate rabbit proximal tubular kidney epithelial cells free of fibroblasts.  相似文献   

8.
Oxidant-mediated apoptosis has been implicated in renal injury due to ischemia reperfusion (IR); however, the apoptotic signaling pathways following IR have been incompletely defined. The purpose of this study was to examine the role of oxidants on cell death in a model of in vitro simulated IR injury in renal proximal tubular epithelial cells by analyzing the effects of a cell-permeable superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTmPyP). Renal proximal tubular epithelial cells were ATP depleted for 2, 4, or 6 h, followed by 2 h of recovery. We found that MnTmPyP was effective in attenuating cytotoxicity (P<0.001) and decreasing steady-state oxidant levels (P<0.001) and apoptotic cell death (P<0.001) following ATP depletion-recovery. MnTmPyP treatment prevented the early cytosolic release of cytochrome c and increased Bcl-2 protein levels following short durations of ATP depletion-recovery. After longer periods of ATP depletion-recovery, we observed a significant increase in TNF-alpha protein levels (P<0.001) and caspase-8 activation (P<0.001), both of which were decreased (P<0.001) by treatment with MnTmPyP. Our results suggest that oxidant mediated apoptosis via the mitochondrial pathway during the early phase of ATP depletion and by activation of the receptor-mediated apoptotic pathway following longer durations of injury.  相似文献   

9.
Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.  相似文献   

10.
11.
Polypeptides of bovine aortic, pulmonary artery, and pulmonary microvascular endothelial cells, as well as vascular smooth muscle cells and retinal pericytes were evaluated by two-dimensional gel electrophoresis. The principal cytoskeletal proteins in all of these cell types were actin, vimentin, tropomyosin, and tubulin. Cultured pulmonary microvascular endothelial cells also expressed 12 unique polypeptides including a 41 kd acidic type I and two isoforms of a 52 kd basic type II simple epithelial cytokeratin microvascular endothelial cell expression of the simple epithelial cytokeratins was maintained in cultured in the presence or absence of retinal-derived growth factor, and regardless of whether cells were cultured on gelatin, fibronectin, collagen I, collagen IV, laminin, basement membrane proteins, or plastic. Cytokeratin expression was maintained through at least 50 population doublings in culture. The expression of cytokeratins was found to be regulated by cell density. Pulmonary microvascular endothelial cells seeded at 2.5 X 10(5) cell/cm2 (confluent seeding) expressed 3.5 times more cytokeratins than cells seeded at 1.25 X 10(4) cells/cm2 (sparse seeding). Vimentin expression was not altered by cell density. By indirect immunofluorescence microscopy it was determined that the cytokeratins were distributed cytoplasmically at subconfluent cell densities but that cytokeratin 19 sometimes localized at regions of cell-cell contact after cells reached confluence. Vimentin had a cytoplasmic distribution regardless of cell density. These results suggest that pulmonary microvascular endothelial cell have a distinctive cytoskeleton that may provide them with functionally unique properties when compared with endothelial cells derived from the macrovasculature. In conjunction with conventional endothelial cell markers, the presence of simple epithelial cytokeratins may be an important biochemical criterion for identifying pulmonary microvascular endothelial cells.  相似文献   

12.
13.
Previous studies from our laboratory (Seetharam, B., Levine, J. S., Ramasamy, M., and Alpers, D. H. (1988) J. Biol. Chem. 263, 4443-4449; Fyfe, J. C., Ramanujam, K. S., Ramaswamy, K., Patterson, D. F., and Seetharam, B. (1991) J. Biol. Chem. 266, 4489-4494) have identified and isolated a 230-kDa receptor from rat and canine kidney which binds with high affinity [57Co]cyanocobalamin (Cbl) complexed to gastric intrinsic factor (IF). Although these studies have identified a renal receptor which binds intrinsic factor-cobalamin (IFCR), it is not known whether the binding is specific for IF-Cbl and whether renal cells internalize [57Co]Cbl bound to IF and transport [57Co]Cbl across the cell. Using a variety of renal cells, our results show that IF-[57Co]Cbl binding activity is detected in proximal tubular-derived epithelial cells from opossum (OK) and porcine kidney (LLC-PK1) but not in distal tubular-derived cells from canine kidney cells (MDCK). Metabolic labeling studies with Tran 35S-label confirmed the presence of a 230-kDa IFCR in OK and LLC-PK1 cells. Cell surface labeling and binding studies demonstrated that IFCR is targeted to the apical membrane. This apical expression of IFCR in OK cells is inhibited by the microtubule-disruptive drugs, colchicine and nocodazole. Opossum kidney cells when grown on culture inserts are polarized and transport [57Co]Cbl only when bound to IF and not to other Cbl binders. Furthermore, the transport of [57Co]Cbl occurred unidirectionally from the apical to the basolateral surface. Treatment of cells with colchicine or nocodazole inhibited the surface binding of IF-[57Co]Cbl as well as the transcytosis of [57Co]Cbl by 70-75%. IFCR retained intracellualarly by incubation of cells with colchicine or nocodazole is degraded by leupeptin-sensitive proteases. Based on these results, we suggest that proximal tubular-derived epithelial cells transport [57Co]Cbl bound to IF in a saturable way via receptor-mediated endocytosis.  相似文献   

14.
In recent years, although the development of clinical therapy for diabetic kidney disease (DKD) has made great progress, the progression of DKD still cannot be controlled. Therefore, further study of the pathogenesis of DKD and improvements in DKD treatment are crucial for prognosis. Traditional studies have shown that podocyte injury plays an important role in this process. Recently, it has been found that glomerulotubular balance and tubuloglomerular feedback (TGF) may be involved in the progression of DKD. Glomerulotubular balance is the specific gravity absorption of the glomerular ultrafiltrate by the proximal tubules, which absorbs only 65% to 70% of the ultrafiltrate. This ensures that the urine volume will not change much regardless of whether the glomerular filtration rate (GFR) increases or decreases. TGF is one of the significant mechanisms of renal blood flow and self‐regulation of GFR, but how they participate in the development of DKD in the pathological state and the specific mechanism is not clear. Injury to tubular epithelial cells (TECs) is the key link in DKD. Additionally, injury to glomerular endothelial cells (GECs) plays a key role in the early occurrence and development of DKD. However, TECs and GECs are close to each other in anatomical position and can crosstalk with each other, which may affect the development of DKD. Therefore, the purpose of this review was to summarize the current knowledge on the crosstalk between TECs and GECs in the pathogenesis of DKD and to highlight specific clinical and potential therapeutic strategies.  相似文献   

15.
16.
Human proximal tubular (PT) epithelial cells were isolated from urine and monoclonally cultured as monolayers for 1 wk, after which they were subcultured between two layers of collagen gel, designated a "collagen gel sandwich." Under these culture conditions, PT cells formed three-dimensional tubular structures exhibiting distinct polarized cell morphology. Scanning and transmission electron microscopic studies showed that they bore numerous microvilli at the apical surface and that they closely contacted the collagen gel at the basal surface. These studies indicate that PT cells exfoliated in urine still exhibit the potential to proliferate and form organized structures mimicking in vivo tubules. Because of the current lack of useful culture systems for human tubular epithelial cells originating from kidney tissue, we suggest that this unique culture system using voided PT cells in urine could open up new avenues to study not only the mechanisms of morphogenesis but also the physiology of human PT cells.  相似文献   

17.
The tubular epithelium of the kidney is susceptible to injury from many causes, such as ischemia-reperfusion and the associated oxidative stress, nephrotoxins, inflammatory and immune disorders and many others. The outcome is often acute kidney injury, which may progress to chronic kidney disease and fibrosis. Acute kidney injury involves not only direct injury to the distal tubular (DT) and proximal tubular (PT) epithelium during and immediately following the injurious event, but the closely-associated and sometimes dysfunctional renal vascular endothelium also plays an important part in modulating the tubular epithelial injury. In comparison with the PT, the DT epithelium is less sensitive to cell death, especially after ischemic injury. It is more prone to apoptosis than necrosis when it dies, and has key paracrine and autocrine functions in secreting an array of inflammatory, reparative, and survival cytokines that include chemotactic cytokines, polypeptide growth factors, and vasoactive peptides. In a neighborly way, the cytokines and growth factors secreted by the DT epithelium may then act positively on the ischemia-sensitive PT that has receptors to many of these proteins, but may not be able to synthesize them. A more complete understanding of these cellular events will allow protection against nephron destruction, regeneration leading to re-epithelialization of the injured tubules, or prevention of progression to chronic kidney disease. This review looks at these functions in the DT epithelial cells, specifically the cells in the medullary thick ascending limb of the loop of Henle, in contrast with those of the straight segment of the PT.  相似文献   

18.
Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.  相似文献   

19.
20.
All-trans retinoic acid (ATRA) induces cellular senescence via up-regulation of p16 and p21; however, the action mechanism of ATRA is unknown. Here, we show that ATRA induces promoter hypomethylation of p16 and p21 via down-regulation of DNA methyltransferases 1, 3a, and 3b to facilitate binding of Ets1/2 to the p16 promoter and p53 to the p21 promoter, resulting in up-regulation of their expression and subsequent induction of cellular senescence in HepG2 cells. These effects were mediated by retinoic acid receptor β2 whose promoter was also hypomethylated in the presence of ATRA. Therefore, ATRA can be considered as an epi-drug in cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号