首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the role of sensory nerves in glucose tolerance in conscious Wistar rats neonatally treated with neurotoxin capsaicin or vehicle. Intravenous glucose tolerance tests (IVGTT, 150, 300 and 450 mg in 30 min) were performed to measure glucose tolerance, and glucose, insulin and glucagon levels were measured. Higher glucose concentration resulted in a greater insulin response in both capsaicin- and vehicle-treated rats. However, glucose-stimulated insulin secretion was attenuated in capsaicin-treated animals, even though glucose levels did not differ. Glucagon levels did not differ between both groups. These results show that capsaicin-sensitive nerves are involved in glucose-stimulated insulin secretion, but are not directly involved in the regulation of blood glucose levels. Moreover, they suggest that capsaicin-sensitive nerves could be involved in the regulation of insulin sensitivity. We hypothesize that sensory afferents could play a role in the aetiology of pathologies where glucohomeostatic mechanisms are disturbed, as is in type 2 diabetes mellitus.  相似文献   

2.
3.
4.
 Several attempts at building a satisfactory model of the glucose-insulin system are recorded in the literature. The minimal model, which is the model currently mostly used in physiological research on the metabolism of glucose, was proposed in the early eighties for the interpretation of the glucose and insulin plasma concentrations following the intravenous glucose tolerance test. It is composed of two parts: the first consists of two differential equations and describes the glucose plasma concentration time-course treating insulin plasma concentration as a known forcing function; the second consists of a single equation and describes the time course of plasma insulin concentration treating glucose plasma concentration as a known forcing function. The two parts are to be separately estimated on the available data. In order to study glucose-insulin homeostasis as a single dynamical system, a unified model would be desirable. To this end, the simple coupling of the original two parts of the minimal model is not appropriate, since it can be shown that, for commonly observed combinations of parameter values, the coupled model would not admit an equilibrium and the concentration of active insulin in the “distant” compartment would be predicted to increase without bounds. For comparison, a simple delay-differential model is introduced, is demonstrated to be globally asymptotically stable around a unique equilibrium point corresponding to the pre-bolus conditions, and is shown to have positive and bounded solutions for all times. The results of fitting the delay-differential model to experimental data from ten healthy volunteers are also shown. It is concluded that a global unified model is both theoretically desirable and practically usable, and that any such model ought to undergo formal analysis to establish its appropriateness and to exclude conflicts with accepted physiological notions. Received: 22 June 1998 / Revised version: 24 February 1999  相似文献   

5.
Recent studies suggest that measuring the free-fatty acids (FFA) during an intravenous glucose tolerance test (IVGTT) may provide information about the metabolic associations between serum FFA and carbohydrate and insulin metabolism. We evaluated the FFA profile during an IVGTT and determined whether this test changes the composition and concentration of FFA. An IVGTT was given to 38 severely obese persons before and 7 months after undergoing bariatric surgery and also to 12 healthy, nonobese persons. The concentration and composition of the FFA were studied at different times during the test. The concentration of FFA fell significantly faster during the IVGTT in the controls and in the severely obese persons with normal-fasting glucose (NFG) than in the severely obese persons with impaired-fasting glucose (IFG) or type 2 diabetes mellitus (T2DM) (P < 0.05). Significant differences were found in the time to minimum serum concentrations of FFA (control = NFG < IFG < T2DM) (P < 0.001). These variables improved after bariatric surgery in the three groups. The percentage of monounsaturated and n-6 polyunsaturated FFA in the control subjects and in the obese persons, both before and after surgery, decreased significantly during the IVGTT. In conclusion, during an IVGTT, severely obese persons with IFG or T2DM experienced a lower fall in the FFA than the severely obese persons with NFG and the controls, becoming normal after bariatric surgery.  相似文献   

6.
7.
8.

Background  

The Minimal Model, (MM), used to assess insulin sensitivity (IS) from Intra-Venous Glucose-Tolerance Test (IVGTT) data, suffers from frequent lack of identifiability (parameter estimates with Coefficients of Variation (CV) less than 52%). The recently proposed Single Delay Model (SDM) is evaluated as a practical alternative.  相似文献   

9.
10.
A simplified technique was established for the intravenous glucose tolerance test (ivGTT) in unanesthetized rats. In order to evaluate the relation between insulin secretion, glucose load and glucose disappearance rate, precatheterized rats were given glucose ranging in dose from 0.25 to 2.0 g/kg bw by intravenous injection. A highly linear correlation was observed in glucose disappearance rate during a period of 4-32 min. A glucose load greater than 0.5 g/kg ow induced a maximum response in insulin secretion. Small blood samples were collected using the orbital bleeding technique at 4, 16 and 28 minutes after a glucose load of 1.0 g/kg bw had been given and then T1/2, the time taken for the glucose level to fall by one half, was calculated. The mean T1/2 was significantly longer in alloxan- or cyproheptadin-diabetic rats than that in the intacts. These data indicate that a glucose load of 1.0 g/kg administered by intravenous injection with the T1/2 calculated between 4 and 32 minutes would provide an accurate means of assessing pancreatic endocrine function.  相似文献   

11.
Rise in rectal temperature (Tre) and survival time was determined on exposure to 38°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both, and in young rats with and without glucose feeding or insulin treatment. The heat tolerance of adult animals treated with streptozotocin and insulin plus glucose and of adult and young animals treated with glucose feeding or insulin was less than that of their respective normoglycemic controls. The rectal temperature on exposure to heat in the treated animals was significantly higher than that of controls in the adult, but not in young rats. Exposure to heat of the normoglycemic and glucose-fed animals resulted in a rise in blood glucose in the adults and a fall in the young. The already raised blood glucose level in the streptozotocin-treated animals rose further on exposure to heat. The rate of recovery of the blood glucose was not significantly altered by exposure of the animals to heat 60 min after administration of insulin or insulin plus glucose.  相似文献   

12.
We tested the hypothesis that caffeine ingestion results in an exaggerated response in blood glucose and (or) insulin during an oral glucose tolerance test (OGTT). Young, fit adult males (n = 18) underwent 2 OGTT. The subjects ingested caffeine (5 mg/kg) or placebo (double blind) and 1 h later ingested 75 g of dextrose. There were no differences between the fasted levels of serum insulin, C peptide, blood glucose, or lactate and there were no differences within or between trials in these measures prior to the OGTT. Following the OGTT, all of these parameters increased (P < or = 0.05) for the duration of the OGTT. Caffeine ingestion resulted in an increase (P < or = 0.05) in serum fatty acids, glycerol, and plasma epinephrine prior to the OGTT. During the OGTT, these parameters decreased to match those of the placebo trial. In the caffeine trial the serum insulin and C peptide concentrations were significantly greater (P < or = 0.001) than for placebo for the last 90 min of the OGTT and the area under the curve (AUC) for both measures were 60 and 37% greater (P < or = 0.001), respectively. This prolonged, increased elevation in insulin did not result in a lower blood glucose level; in fact, the AUC for blood glucose was 24% greater (P = 0.20) in the caffeine treatment group. The data support our hypothesis that caffeine ingestion results in a greater increase in insulin concentration during an OGTT. This, together with a trend towards a greater rather than a more modest response in blood glucose, suggests that caffeine ingestion may have resulted in insulin resistance.  相似文献   

13.
Fall in rectal temperature (Tre) and survival time was determined on exposure to–20°C in adult normoglycemic and diabetic (streptozotocin treated) rats and 1 h following glucose feeding or insulin administration or both and on exposure to–10°C in young rats with and without glucose feeding. The susceptibility to frostbite was determined by exposure of the limbs to freezing mixture of–19°C or–23°C. The rate of fall of Tre was less and the survival time more in glucose and insulin plus glucose treated animals. On the other hand, the rate of fall of Tre was more and the survival time less, in dia betic and insulin-treated animals. The rectal temperature at which the animal died was the same in the control and the treated animals. The susceptibility to frost bite was more in insulin treated and diabetic animals and less in glucose-fed animals. Exposure to cold during the second h after glucose or glucose plus insulin injection did not alter the blood glucose from that obtained at room temperature. In insulin-treated animals the rate of rise of blood glucose during the second h was much higher at low temperature than at room temperature. The rise in blood glucose in diabetic animals was much higher than in normoglycemic animals exposed to cold.  相似文献   

14.
15.
16.
17.
18.
Insulin receptors of erythrocytes and oral glucose tolerance test (O-GTT) were investigated in sixteen children treated with prednisolone for various diseases. Ten patients (Group 1) received low doses of prednisolone (0.2-0.5 mg/kg body weight/day) and six patients (Group 2) received higher doses of prednisolone (1.5-2.0 mg/kg body weight/day). Compared to the values for controls, the sums of blood glucose (sigma BS) at O-GTT in both group 1 and group 2 patients were significantly elevated. (422 +/- 75 mg/dl, p less than 0.01 Group 1; 419 +/- 39 mg/dl, p less than 0.01 Group 2; 338 +/- 41 mg/dl controls) Significant differences were not observed in the sums of insulin concentration at O-GTT, fasting blood concentration and basal insulin levels among these two groups and the controls. There was a significant increase in the maximum insulin binding in group 2 (9.13 +/- 0.68% in group 2, 7.97 +/- 1.06% in controls, p less than 0.05), but not in group 1 (8.59 +/- 1.82%). There is no significant difference in binding affinity or the number of receptors between any of these two patients' groups and the controls. When patients in group 1 and group 2 were combined, sigma IRI levels were significantly elevated in the patients (p less than 0.05). These results suggested that prednisolone treatment with a smaller dosage as well as with the higher dosage resulted in a carbohydrate intolerance, the main cause of which is located in a postreceptor step (or steps) of insulin action.  相似文献   

19.
Evaluating the glucose tolerance test in mice   总被引:1,自引:0,他引:1  
The objective of this study was to determine the optimal conditions under which to assess glucose tolerance in chow- and high-fat-fed C57BL/6J mice. Mice were fed either chow or high-fat diet for 8 wk. Variables tested were fasting duration (0-, 3-, 6-, and 24-h and overnight fasting), route of administration (intraperitoneal vs. oral) load of glucose given (2, 1, or 0.5 g/kg and fixed 50-mg dose), and state of consciousness. Basal glucose concentrations were increased in high-fat- compared with chow-fed mice following 6 h of fasting (9.1 +/- 0.3 vs. 7.9 +/- 0.4 mmol/l P = 0.01). Glucose tolerance was most different and therefore significant (P = 0.001) in high-fat-fed mice after 6 h of fasting (1,973 +/- 96 vs. 1,248 +/- 83 mmol.l(-1).120 min(-1)). The difference in glucose tolerance was greater following an OGTT (142%), in contrast to an IPGTT, with a 127% difference between high fat and chow. We also found that administering 2 g/kg of glucose resulted in a greater level of significance (P = 0.0008) in glucose intolerance in high-fat- compared with chow-fed mice. A fixed dose of 50 mg glucose regardless of body weight was enough to show glucose intolerance in high-fat- vs. chow-fed mice. Finally, high-fat-fed mice showed glucose intolerance compared with their chow-fed counterparts whether they were tested under conscious or anesthetized conditions. We conclude that 2 g/kg glucose administered orally following 6 h of fasting is best to assess glucose tolerance in mice under these conditions.  相似文献   

20.
The utility of the disposition index as a measure of beta-cell compensatory capacity rests on the established hyperbolic relationship between its component insulin secretion and sensitivity measures as derived from the intravenous glucose tolerance test (IVGTT). If one is to derive an analogous measure of beta-cell compensation from the oral glucose tolerance test (OGTT), it is thus necessary to first establish the existence of this hyperbolic relationship between OGTT-based measures of insulin secretion and insulin sensitivity. In this context, we tested five OGTT-based measures of secretion (insulinogenic index, Stumvoll first phase, Stumvoll second phase, ratio of total area-under-the-insulin-curve to area-under-the-glucose-curve (AUC(ins/gluc)), and incremental AUC(ins/gluc)) with two measures of sensitivity (Matsuda index and 1/Homeostasis Model of Assessment for insulin resistance (HOMA-IR)). Using a model of log(secretion measure) = constant + beta x log(sensitivity measure), a hyperbolic relationship can be established if beta is approximately equal to -1, with 95% confidence interval (CI) excluding 0. In 277 women with normal glucose tolerance (NGT), the pairing of total AUC(ins/gluc) and Matsuda index was the only combination that satisfied these criteria (beta = -0.99, 95% CI (-1.66, -0.33)). This pairing also satisfied hyperbolic criteria in 53 women with impaired glucose tolerance (IGT) (beta = -1.02, (-1.72, -0.32)). In a separate data set, this pairing yielded distinct hyperbolae for NGT (n = 245) (beta = -0.99, (-1.67, -0.32)), IGT (n = 116) (beta = -1.18, (-1.84, -0.53)), and diabetes (n = 43) (beta = -1.37, (-2.46, -0.29)). Moreover, the product of AUC(ins/gluc) and Matsuda index progressively decreased from NGT (212) to IGT (193) to diabetes (104) (P < 0.001), consistent with declining beta-cell function. In summary, a hyperbolic relationship can be demonstrated between OGTT-derived AUC(ins/gluc) and Matsuda index across a range of glucose tolerance. Based on these findings, the product of these two indices emerges as a potential OGTT-based measure of beta-cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号