首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Protein, nucleic acids, and nucleotide syntheses were studied in pea aphids, Acyrthosiphon pisum (Harris), by feeding them labeled 14C-amino acids and [5-3H]-orotic acid in sucrose. It was demonstrated that in the absence of dietary essential amino acids, aphids were capable of synthesizing nucleic acids, nucleotides, and proteins when provided with a single dietary amino acid in sucrose. It is suggested that other required amino acids were possibly supplied by the symbionts present in the pea aphid and/or were obtained from the amino acid pool in the hemolymph or glucose, one of the end products of sucrose digestion. Of the various amino acids tested, synthesis of measurable amounts of protein or other compounds occurred when alanine, aspartic acid, glutamic acid, glycine, proline, or serine were provided, but no synthesis occurred with cysteine.  相似文献   

2.
Madore MA 《Plant physiology》1990,93(2):617-622
Mature, variegated leaves of Coleus blumei Benth. contained stachyose and other raffinose series sugars in both green, photosynthetic and white, nonphotosynthetic tissues. However, unlike the green tissues, white tissues had no detectable level of galactinol synthase activity and a low level of sucrose phosphate synthase indicating that stachyose and possibly sucrose present in white tissues may have originated in green tissues. Uptake of exogenously supplied [14C]stachyose or [14C]sucrose into either tissue type showed conventional kinetic profiles indicating combined operation of linear first-order and saturable systems. Autoradiographs of white discs showed no detectable minor vein labelling with [14C]stachyose, but some degree of vein labeling with [14C]sucrose. Autoradiographs of green discs showed substantial vein loading with either sugar. In both tissues, p-chloromercuribenzenesulfonic acid had no effect on the linear component of sucrose or stachyose uptake but inhibited the saturable component. Both tissues contained high levels of invertase, sucrose synthase and α-galactosidase and extensively metabolized exogenously supplied 14C-sugars. In green tissues, label from exogenous sugars was recovered as raffinose-series sugars. In white tissues, exogenous sugars were hydrolysed and converted to amino acids and organic acids. The results indicate that variegated Coleus leaves may be useful for studies on both phloem loading and phloem unloading processes in stachyose-transporting species.  相似文献   

3.
4.
The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.  相似文献   

5.
The short-term changes in metabolism that occurred after adding glucose or sucrose to freshly cut discs from growing potato (Solanum tuberosum L.) tubers were investigated. (i) When glucose was supplied, there was a marked increase in glycolytic metabolites, and respiration was stimulated. When sucrose was supplied, amounts of glycolytic metabolites including hexose phosphates and 3-phosphoglycerate (3PGA) were similar to or lower than in control discs incubated without sugars, and respiration did not rise initially above that in control discs. This different response to sucrose and glucose was found across the concentration range 5–200 mM. A larger proportion of the metabolised 14C was converted to starch when [14C] sucrose was supplied than when [14C] glucose was supplied. The different effect on metabolite levels, respiration and starch synthesis was largest after 20–30 min, and decreased in longer incubations. (ii) When 5 or 25 mM sucrose was added in the presence of [14C] glucose, it led to a decrease in hexose phosphates and 3PGA, and a small increase in the rate of starch synthesis compared to discs incubated with glucose in the absence of sucrose. These differences were seen in a 30-min pulse and a 2-h pulse. Whereas ADP-glucose levels after adding sucrose resembled those in control discs, glucose led to a decrease in ADP-glucose. This decrease did not occur when 5 or 25 mM sucrose was added with the glucose. (iii) To check the relevance of these experiments for intact tubers, water or 100 mM mannitol, sucrose or glucose were supplied through the stolon to intact tubers for 24 h. A 0.2 mM solution of [14C] glucose was then introduced into the tubers, and its metabolism investigated during the next 30 min. Labelling of starch was increased after preincubation with sucrose, and significantly inhibited after preincubation with glucose. (iv) It is concluded that glucose and sucrose have different effects on tuber metabolism. Whereas glucose leads to a preferential stimulation of respiration, sucrose preferentially stimulates starch synthesis via a novel mechanism that allows stimulation of ADP-glucose pyrophosphorylase even though the levels of hexose phosphates and the allosteric activator 3PGA decrease. Received: 9 October 1997 / Accepted: 3 February 1998  相似文献   

6.
Sea buckthorn (Hippophae L.) is a woody perennial shrub or small tree whose berries are rich in bioactive compounds with powerful nutritional and medicinal properties. Untargeted 1H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA) were used to characterize the metabolic profile of berry quality. There was strong separation in the NMR signal intensity of bioactive compounds between pulp and seeds, such as amino acids [gamma-aminobutyric acid (GABA), aspartate, glutamate, theanine, and proline], organic acids (citrate, succinate, malate, acetate, quinate, and heriguard), and carbohydrates (sucrose, fructose, glucose, and melibiose). Sea buckthorn cultivars could be clearly separated into two groups using principal component analysis (PCA) based on NMR spectroscopy of bioactive compounds in the pulp and seeds. Several metabolic compounds such as sugar, organic acids, and amino acids could serve as biomarkers for prediction of berry quality and for classification of germplasm collections. This dataset provides potential information concerning the mechanisms of berry quality formation and contributes to increasing the breeding efficiency of sea buckthorn quality improvement.  相似文献   

7.
8.
Partitioning of exogenously supplied U-14C-saccharose into primary metabolic pool as sugars, amino acids, and organic acids was analyzed and simultaneous utilization for production of alkaloid by leaf, stem, and root in twigs and rooted plants of Catharanthus roseus grown in hydroponic culture medium was determined. Twigs revealed comparable distribution of total 14C label in leaf and stem. Stems contained significantly higher 14C label in sugar fraction and in alkaloids [47 kBq kg−1(DM)] than leaf. In rooted plants, label in 14C in metabolic fractions in root such as ethanol-soluble, ethanol-insoluble, and chloroform-soluble fractions and in components such as sugars, amino acids, and organic acids were significantly higher than in stems and leaves. This was related with significantly higher content of 14C in alkaloids in stems and leaves. 14C contents in sugars, amino acids, and organic acids increased from leaf to stem and roots. Roots are the major accumulators of metabolites accompanied by higher biosynthetic utilization for alkaloid accumulation.  相似文献   

9.
Solutions of nitrates (0.5% KNO3, 0.2% NH4NO3) or urea (0.15%) were fed under the pressure of 104 Pa to 50–60-cm-long detached shoots of common flax (Linum usitatissimum L.). One hour after the start of supplying the solutions, an assimilation clip chamber was fastened to the middle part of the shoot (14C source area), and 14CO2 was blown through in the light for 2.5 min. The analysis of distribution of 14C among the labeled products of photosynthesis produced by source leaves showed that nitrates reduced the incorporation of the label into sucrose. At the same time, the ratio of labeled sucrose to labeled hexoses decreased, and the incorporation of the label into serine greatly increased. Urea did not produce such effects. The pattern of distribution of 14C within the plant 3 h after the assimilation of 14CO2 points to the suppression of assimilate efflux from the leaves of plants fed with nitrates. In plants supplied with water or urea, 17–20% of labeled carbon was found below the 14C source area of the shoot, in nitrate type of treatment, only 3–5% was found there. In plants supplied with nitrates, the cortex tissue below the source leaf contained more 14C in proteins and less in low-molecular substances. In the wood tissue, such a correlation was not observed. When the shoot was supplied with water or urea, the content of 14C in sucrose in the source leaves in 3 h declined from 55–60% to 38–42%. When the shoot was fed with nitrates, the share of label in sucrose increased from 50 to 62–73%. Autoradiography of the source leaves showed that, in plants supplied with water or urea, the label was predominantly accumulated in large vascular bundles, and in nitrate type of treatment, it was accumulated outside large bundles. Electron microscopy showed that, in nitrate plants, the companion cells of phloem endings were very much vacuolated.  相似文献   

10.
Fluid extracted from grapevine shoots by suction contained upto 0.2 per cent (w/v) of sugar. The total sugar concentrationand the relative concentrations of sucrose, glucose, and fructosechanged along the length of a shoot. Whereas sucrose is absentfrom or present only in traces in fluid bleeding from cut stumps,it was found to be a major constituent in fluid extracted fromsections of wood by suction. 14C-glucose administered to thewood of an excised shoot moved up in the transpiration stream,moved laterally, into the bark, and was partly converted tosucrose and fructose. When 14CO2 was supplied to a leaf of anintact vine, radioactive sugars were found in the fluid afterwardsextracted from the wood by suction. When a ring of bark wasremoved from the stem at a point above the 14CO2-treated leafmost of the 14C in the bark, wood, and extracted fluid belowthe ring was in the form of sugar but 14C in tissues above thering was mainly in organic acids and amino acids. It is suggestedthat a barrier within the wood prevents diffusion of sugarsinto the transpiration stream, and that the fluid extractedfrom the wood by suction cannot be regarded as ascending sapsince it contains considerable amounts of non-moving material.  相似文献   

11.
Steer BT  Beevers H 《Plant physiology》1967,42(9):1197-1201
The rates of utilization of exogenously supplied 14C labeled acids by corn roots was compared to the utilization of these acids generated endogenously in the mitochondria from acetate-3H. 14C-labeled citrate, pyruvate, succinate, glutamate or aspartate were supplied with acetate-3H in a 15 minute pulse and the 14C and 3H contents of extracted acids were measured over a 4 hour period. It was found, in contrast to previous experiments with malate, that these exogenously added acids were used as rapidly as the endogenous forms. Apparently, therefore, these acids penetrate readily into the mitochondria and do not enter cytoplasmic pools which are not in ready equilibrium with those in the mitochondria. Small amounts of labeled glutamate were produced from succinate-2,3-3H by corn root tissue. Since glutamate would not be expected to be labeled by reactions of the tricarboxylic acid cycle it was concluded that it was produced rather directly from succinate. The minor pool of glutamate generated in this way retained its radioactivity while that generated in the cycle was rapidly lost. An extra-mitochondrial location of this pool of glutamate is therefore suggested.  相似文献   

12.
Analyses of cocoa swollen shoot virus-infected and healthy cocoa (Theobroma cacao L.) plant tissues were made to determine the effect of virus infection on the metabolism and transport of carbohydrates in affected plants. Starch, sucrose and reducing sugars were found to accumulate in infected tissues. Translocation of photosynthates (mainly as sucrose) to the stem and root system, as estimated by the overnight loss of carbohydrates from the leaves and by 14CO2 tracer experiments, was as efficient in the infected plants as in the healthy. Infected plants showed a higher diurnal turnover of carbohydrates in their leaves and, on unit leaf area basis, higher levels of 14C-labelled assimilates suggesting that they have a greater photosynthetic capacity than the healthy plants. The rate of respiration, as determined by the proportions of organic acids, amino acids and other intermediary metabolites formed from translocated 14C-labelled sugars, was generally higher in infected than in healthy plants. It is concluded from available data showing the presence in infected tissues of mineral nutrients, protein N and amino acids at the same concentrations as in healthy plants, and from the relatively high rates of photosynthesis and respiration that a high rate of metabolic activity is maintained in the host-virus system. Some factors possibly contributing to the stunted growth of infected plants are discussed in the light of these findings.  相似文献   

13.
Summary Various plant secondary products have been implicated in the promotion of good health or the prevention of disease in humans, but little is known about the way they are absorbed in the gut, or in which tissues they are deposited throughout the body. While these issues could be studied if the phytochemicals were isotopically labeled, generating labeled molecules often is problematic because many compounds of interest can be synthesized only in planta at present. In order to generale 14C-labeled phytochemicals of high radioactive enrichment, we developed an enclosed-chamber labeling system in which cell suspension cultures can be safely and efficiently grown when supplied with 14C-enriched precursors. The system is designed to hold culture flasks within a clear, polyacrylic compartment that is affixed to the top of a rotary shaker. The flow-through gas exchange nature of the system allows for O2 replenishment and complete capture of respired 14CO2 throughout the entire period of cell culture. Air is circulated internally with the aid of a small fan, and chamber air temperature is monitored continuously with an internal temperature probe and data logger. Production runs of 12–14 d with Vaccinium pahalae (ohelo berry) and Vitis vinifera (grape) suspension cultures, using [14C]sucrose as the carbon source, demonstrated a 20–23% efficiency of 14C incorporation into the flavonoid-rich fractions. Further studies with ohelo cell cultures showed that flavonoids were produced with either sucrose or glucose as the carbohydrate source, although flavonoid productivity (measured as anthocyanins) was higher with sucrose. This comprehensive chamber system should have broad applicability with numerous cell types and can be used to generate a wide array of labeled phytochemicals.  相似文献   

14.
Trehalose 6–phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose–Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short‐term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol‐inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post‐translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio‐isotope (14CO2) and stable isotope (13CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose–Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants.  相似文献   

15.
Sucrose in the free space of translocating maize leaf bundles   总被引:1,自引:1,他引:0       下载免费PDF全文
Following exposure of portions of mature maize (Zea mays L.) leaf strips to 14CO2, xylem exudate from the leaf strips contained [14C]sucrose. Sucrose was the only sugar in the xylem exudate which was obtained from the cut surface of the leaf strips by reducing the external pressure. The sucrose found in the xylem exudate apparently was obtained from the free space of the vascular bundles, its concentration amounting up to 0.25%. When [14C]glucose or [14C]fructose was supplied in the dark to one end of a maize leaf strip, each was taken up by the xylem, and transported to the opposite end. Xylem exudate from such leaf strips contained 14C-labeled sucrose in addition to the 14C-labeled hexose. The results of this study support the view that sucrose is loaded into the companion cell-sieve tube complexes from the apoplast of the vascular bundles in the maize leaf.  相似文献   

16.
Tolerance to ethanol and the ability to metabolize key intermediary substrates under anaerobiosis were studied in Echinochloa crus-galli (L.) Beauv. var oryzicola seeds to further characterize the mechanisms which enable it to germinate and grow without O2.

Our results indicate that E. crus-galli var oryzicola possesses an inherently high tolerance to ethanol and is able to metabolize low levels of ethanol in the absence of O2. Concentrations of ethanol 45-fold greater than endogenous levels did not prove toxic to germinating seeds.

Five-day anaerobically grown seedlings of E. crus-galli var oryzicola metabolized added [14C]sucrose primarily to CO2 and ethanol. Of the soluble compounds labeled, the phosphorylated intermediates of glycolysis and the oxidative pentose phosphate pathway predominated more under anaerobiosis than in air. In addition, organic acids and lipids were labeled from [14C]sucrose, the latter indicating that metabolism of carbohydrate via acetyl-CoA occurred in the absence of O2. Lipids were also labeled when seeds were supplied with [14C]ethanol or [14C]acetate. Labeling experiments using the above compounds plus [14C]NaHCO3, showed further labeling of organic acids; succinate and citrate being labeled under nitrogen, while fumarate was formed in air.

The above metabolic characteristics would allow for the maintenance of an active alcoholic fermentation system which, along with high alcohol dehydrogenase activity, would continue to recycle NAD and result in continued energy production without O2. In addition, Echinochloa's ability to metabolize carbohydrate intermediates and to synthesize lipids indicates that mechanisms exist for providing the carbon intermediates for biosynthesis, particularly membrane synthesis for growth, even in the absence of O2.

  相似文献   

17.
A method was developed for the isolation of vacuoles from the mesophyll protoplasts of spinach leaf, employing the discontinuous Ficoll density gradient centrifugation technique. Isolated vacuole preparations were judged to be free from other organellar fractions based on the assays of marker enzyme activities of individual organelles.

Using this isolation method, a time-dependent translocation of 14C-labeled photosynthates into vacuoles was determined. In contrast to a significant transport of 14C organic acids such as malate and citrate within 10 to 15 minutes 14C neutral sugars and amino acids were barely transported into vacuoles during 40 minutes incubation, in spite of the fact that a relatively large amount of these compounds are found in the vacuoles. It was also found that a majority of [14C]sucrose remains in the cytosol, apparently not actively moving into the vacuoles. Overall results appear to suggest that vacuoles are not actively engaged in photosynthetic carbon metabolism in spinach leaf protoplasts.

  相似文献   

18.
Translocation of C Sucrose in Sugar Beet during Darkness   总被引:1,自引:1,他引:0       下载免费PDF全文
Geiger DR  Batey JW 《Plant physiology》1967,42(12):1743-1749
The time-course of arrival of 14C translocate in a sink leaf was studied in sugar beet (Beta vulgaris L. cultivar Klein Wanzleben) for up to 480 minutes of darkness. Following darkening of the source leaf, translocation rapidly declined, reaching a rate approximately 25% of the light period rate by 150 minutes. Comparison of data from plants that were girdled 1 cm below the crown with data from ungirdled plants indicates that after about 150 minutes darkness the beet root becomes a source of translocate to the sink leaf. After about 90 minutes darkness, starch-like reserve polysaccharide from the source leaf begins to contribute 14C to ethanol soluble pools in that leaf. Because of a 15% isotope mass effect, sucrose, at isotopic saturation, reaches a specific activity which is about 85% of the level of the supplied CO2. The source leaf sucrose specific activity remains at the isotopic saturation level for about 150 minutes of darkness, after which time input from polysaccharide reserves causes the specific activity to drop to about 55% of that of the supplied CO2. Sucrose specific activity determinations, polysaccharide dissolution measurements, and pulse labeling experiments indicate that following partial depletion of the sucrose pool, source leaf polysaccharide contributes to dark translocation. Respired CO2 from the source leaf appears to be derived from a pool which, unlike sucrose, remains at a uniform specific activity.  相似文献   

19.
Both somatic and excised zygotic embryos of interior spruce (Picea glauca engelmannii complex) required exogenous sucrose in the medium for germination in vitro. Over a period of 29 days on sucrose-containing medium germinants with roots and epicotyls developed from both kinds of embryo, and their content of linolenic acid (9,12,15-18:3) increased about six- to eightfold. Without added sucrose, embryos showed retarded growth or were necrotic, and the content of linolenic acid was barely detectable in their fatty acid profiles. Through14C-sucrose uptake studies, it was determined that germinants consumed only 25% of the sucrose available in a 1% (wt/vol) sucrose-containing medium. Since no radiolabelled fatty acids were detected, it appears that externally supplied sucrose was not used in the synthesis of lipids. Although sucrose was present during plantlet development, 72% of the initial lipids were consumed. To some extent, the plantlets appeared to be obligate storage lipid utilizers.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - FAMEs Fatty acid methyl esters - HPLC High-performance liquid chromatography  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号