首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G蛋白偶联受体激酶(G protein-coupled receptor kinase,GRK)特异地使活化的G蛋白偶联受体(G protein-coupled receptor,GPCR)发生磷酸化及脱敏化,从而终止后者介导的信号转导通路。研究表明,GRK的功能被高度调控,并具有下行调节GPCR的能力。调控GRK功能的机制包括两个层次:(1)多种途径调控激酶的亚细胞定位及活性,包括GPCR介导、G蛋白偶联、磷脂作用、Ca^2 结合蛋白调控、蛋白激酶C活化、MAPK反馈抑制、小窝蛋白抑制等;(2)调控GRK表达水平,主要体现在其与某些疾病的联系。  相似文献   

2.
G蛋白偶联受体二聚化研究进展   总被引:1,自引:0,他引:1  
高灿  池志强 《生命科学》2001,13(5):193-197
G蛋白偶联受体是细胞膜受体最大的家族,参与调节多种生理过程,在信号识别及转导中具有重要作用,传统观点认为G蛋白偶联受体作为单体起作用,近年来,越来越多的证据表明,G蛋白偶联受体不仅能以二聚体形式存在,而且在细胞信号转导中起重要作用,尤其是对阿片受体异源二聚体的研究,推动了这一领域的研究。本文综述了G蛋白偶联受体二聚化研究进展,以及同源和异源二聚体的结构与功能。  相似文献   

3.
G蛋白偶联受体激酶(GRK)是G蛋白偶联受体(GPCR)信号通路的负性调节因子。近来的研究发现,GRK除了磷酸化G蛋白偶联受体使其脱敏外,还能与其他非受体底物结合,功能呈现多样性。GRK5是GRK家族成员之一,该研究探索了GRK5在细胞周期和有丝分裂中的作用,结果显示:在细胞内干扰GRK5的表达导致分裂中期的细胞数目增多和细胞凋亡。进一步的研究发现,干扰GRK5的表达导致有丝分裂中期的染色体不能正常排列到赤道板,而对分裂后期染色质分离以及胞质分裂没有影响。在细胞内干扰GRK蛋白家族的另一个成员GRK2对有丝分裂则没有明显影响。该研究提示GRK5是细胞有丝分裂的重要调控蛋白。  相似文献   

4.
目的观测G蛋白偶联受体激酶5(G protein-coupled receptor kinase,GRK5)在帕金森病α-synuclein转基因小鼠模型中的表达变化情况,了解GRK5在帕金森病中的可能作用,为发现帕金森病发病机制和探索更好的治疗方法提供新的方向。方法采用Western blotting和实时荧光定量PCR技术对具有不同的人alpha synuclein(hα--syn)表达水平的帕金森病α-synuclein转基因模型小鼠以及3月龄,6月龄以及9月龄A53T突变型帕金森病α-synuclein转基因模型小鼠脑组织进行GRK5的RNA和蛋白水平检测,与同窝阴性对照小鼠进行比较。结果各组帕金森病α-synuclein转基因小鼠与阴性对照小鼠相比,GRK5蛋白表达水平均有不同程度的增加,并且随着转入的hα--syn蛋白表达水平的高低而有所变化。3月龄和6月龄帕金森病转基因模型小鼠与同月龄阴性对照组小鼠相比,GRK5的mRNA和蛋白水平没有变化;而9月龄帕金森病转基因模型小鼠与同月龄阴性对照组小鼠相比,GRK5的mRNA和蛋白水平都有所增加。结论帕金森病α-synuclein转基因模型小鼠具有更高表达水平的GRK5。  相似文献   

5.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是具有7个跨膜螺旋的蛋白质受体,是人体内最大的蛋白质超家族.GPCRs能调控细胞周期,参与多种植物信号通路以及影响一系列的代谢和分化活动.简要介绍了GPCR和G蛋白介导的信号转导机制,GPCRs的结构和植物GPCR及其在植物跨膜信号转导中的作用,并对GPCR的信号转导机制及植物抗病反应分子机制的研究提出展望.  相似文献   

6.
G蛋白偶联受体激活丝裂原活化蛋白激酶的机理   总被引:2,自引:1,他引:1  
Zhu WZ  Han QD 《生理科学进展》1998,29(2):141-144
多种G蛋白偶联受体的均能激活丝裂原活化蛋白激酶。Gi蛋白偶联受体主要通过其βγ亚基,依赖Ras蛋白途径;在大多数哺乳类细胞中Gs蛋白偶联受体通过PKA途径抑制Ras依赖的MAPK活化,但在COS-7细胞,Gs蛋白偶联受体通过PKA途径使表达的MAPK活化;Gq蛋白偶联受体主要通过PKC途径依赖或非依赖于Ras使MAPK活化。MAPK信号途径中EGF受体,酪氨酸激酶及调节蛋白Shc等联级反应蛋白可能  相似文献   

7.
刘飞  张幼怡 《生命科学》2008,20(1):53-57
G蛋白偶联受体是体内最大的受体超家族,它们参与调节生物体内多种生理功能与病理过程。G蛋白偶联受体的分子内构象变化与G蛋白的偶联以及受体的二聚化等是G蛋白偶联受体激活的重要基本过程。借助于单分予研究手段,在G蛋白偶联受体激活方面取得了重要进展。本文将就这些方面进行简要的综述。  相似文献   

8.
脂筏是细胞上富含特殊脂质和蛋白质的微结构域.随着脂筏作为细胞膜上信号传导的平台的认识,这个特征化的区域受到了越来越多的关注.大量的研究已经显示脂筏参与G蛋白偶联受体信号转导的调控.通过精细的调节G蛋白偶联受体、G蛋白和下游信号效应物等信号元件的活性,脂筏可以影响信号转导的专一性和信号偶联的效率.本综述主要介绍脂筏对G蛋白偶联受体信号转导的调控机制的研究进展.  相似文献   

9.
游离脂肪酸(free fatty acid,FFA)是动物一种重要能量来源,同时它还是一种重要的信号分子,其生理功能和作用机制长期以来倍受关注. 最近研究表明,细胞膜存在FFA的特定孤儿型G蛋白偶联膜受体家族.中长链游离脂肪酸是GPR40和GPR120的配基,而短链游离脂肪酸则是GPR41和GPR43的配基. 该受体家族可以介导游离脂肪酸,通过ERK、PI3K-Akt和MAPK信号通路,在维持机体内的葡萄糖稳态、脂肪形成、白细胞功能和细胞增殖等生理过程中发挥重要作用. 本文就游离脂肪酸G蛋白偶联受体的结构、分布、配体选择性、下游信号通路,及其介导FFA生理功能的最新研究进展进行简要综述.  相似文献   

10.
Fan XL  Ma L 《生理科学进展》2001,32(4):334-336
近年来发现一些G蛋白偶联受体(GPCR)能在细胞膜上形成同源或异源双聚体,并证实受体的双聚化为一些有重要生理功能的GPCR在细胞膜上的表达和信号转导的启动所必需,进一步研究表明,一些GPCR的双聚化不仅可以改变受体与配体结合的特异性和亲和力,而且影响GPCR介导的信号转导的调控,这些结果提示,GPCR之间以及GPCR与其它蛋白在细胞膜上的相互作用是调控GPCR转导信号的一个新途径。  相似文献   

11.
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.  相似文献   

12.
G蛋白偶联受体失敏的分子机制   总被引:3,自引:0,他引:3  
G蛋白偶联受体(GPCRs)受到激动剂持续刺激对易发生失敏。受体内化是GPCRs失敏重要分子机制。GPCRs在G蛋白产受体激酶(GRKs)、第二信使调节激酶等作用下发生磷酸化,磷酸化的GPCRs与抑制蛋白(arrestins)结合后导致受体与G蛋白失偶联,并通过胞吞由细胞膜表面向膜内转移,从而因GPCRs的内化而表现为失敏。  相似文献   

13.
Wnt ligands conduct their functions in canonical Wnt signaling by binding to two receptors, the single transmembrane low density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) and seven transmembrane (7TM) Frizzled receptors. Subsequently, phosphorylation of serine/threonine residues within five repeating signature PPPSP motifs on LRP6 is responsible for LRP6 activation. GSK3β, a cytosolic kinase for phosphorylation of a downstream effector β-catenin, was proposed to participate in such LRP6 phosphorylation. Here, we report a new class of membrane-associated kinases for LRP6 phosphorylation. We found that G protein-coupled receptor kinases 5 and 6 (GRK5/6), traditionally known to phosphorylate and desensitize 7TM G protein-coupled receptors, directly phosphorylate the PPPSP motifs on single transmembrane LRP6 and regulate Wnt/LRP6 signaling. GRK5/6-induced LRP6 activation is inhibited by the LRP6 antagonist Dickkopf. Depletion of GRK5 markedly reduces Wnt3A-stimulated LRP6 phosphorylation in cells. In zebrafish, functional knock-down of GRK5 results in reduced Wnt signaling, analogous to LRP6 knock-down, as assessed by decreased abundance of β-catenin and lowered expression of the Wnt target genes cdx4, vent, and axin2. Expression of GRK5 rescues the diminished β-catenin and axin2 response caused by GRK5 depletion. Thus, our findings identify GRK5/6 as novel kinases for the single transmembrane receptor LRP6 during Wnt signaling.  相似文献   

14.
The discoidin domain receptors (DDRs) are receptor tyrosine kinases that recognize collagens as their ligands. DDRs display unique structural features and distinctive activation kinetics, which set them apart from other members of the kinase superfamily. DDRs regulate cell-collagen interactions in normal and pathological conditions and thus are emerging as major sensors of collagen matrices and potential novel therapeutic targets. New structural and biological information has shed light on the molecular mechanisms that regulate DDR signaling, turnover, and function. This minireview provides an overview of these areas of DDR research with the goal of fostering further investigation of these intriguing and unique receptors.  相似文献   

15.
Intracellular signaling systems of G protein-coupled receptors are well established, but their role in paracrine regulation of adjacent cells is generally considered as a tissue-specific mechanism. We have shown previously that AT1 receptor (AT1R) stimulation leads to diacylglycerol lipase-mediated transactivation of co-expressed CB1Rs in Chinese hamster ovary cells. In the present study we detected a paracrine effect of the endocannabinoid release from Chinese hamster ovary, COS7, and HEK293 cells during the stimulation of AT1 angiotensin receptors by determining CB1 cannabinoid receptor activity with bioluminescence resonance energy transfer-based sensors of G protein activation expressed in separate cells. The angiotensin II-induced, paracrine activation of CB1 receptors was visualized by detecting translocation of green fluorescent protein-tagged β-arrestin2. Mass spectrometry analyses have demonstrated angiotensin II-induced stimulation of 2-arachidonoylglycerol production, whereas no increase of anandamide levels was observed. Stimulation of Gq/11-coupled M1, M3, M5 muscarinic, V1 vasopressin, α1a adrenergic, B2 bradykinin receptors, but not Gi/o-coupled M2 and M4 muscarinic receptors, also led to paracrine transactivation of CB1 receptors. These data suggest that, in addition to their retrograde neurotransmitter role, endocannabinoids have much broader paracrine mediator functions during activation of Gq/11-coupled receptors.Hormones, neurotransmitters, and other chemical mediators acting on G protein-coupled receptors (GPCRs)2 exert their effects on the target cells by stimulating G protein-dependent and independent intracellular signaling pathways (14). Activation of Gq/11 protein-coupled receptors causes phospholipase C activation, which produces inositol-trisphosphate and diacylglycerol from phosphatidylinositol (4,5)-bisphosphate, leading to Ca2+-signal generation and protein kinase C activation. However, the concerted response of tissues to chemical mediators frequently also involves the activation of cells adjacent to the target cells, due to the release of paracrine mediators. A well known example is NO, which can be released from activated endothelial cells to cause relaxation of adjacent vascular smooth muscle cells. Lipid mediators can also act as intercellular messengers. For example, endocannabinoids released from postsynaptic neurons after depolarization act as retrograde transmitters by binding to and stimulating presynaptic cannabinoid receptors, which leads to inhibition of γ-aminobutyric acid release (an event termed depolarization-induced suppression of inhibition, DSI) (57).Cannabinoid receptors were first identified based on their ability to selectively recognize marijuana analogs. To date, two cannabinoid receptors have been identified by molecular cloning, CB1 and CB2 receptors (CB1R and CB2R, respectively) (5, 8, 9), although additional GPCRs have also been proposed to function as cannabinoid receptors (10, 11). Cannabinoid receptors also recognize certain lipids present in animal tissues termed endocannabinoids, such as arachidonylethanolamide (anandamide), 2-arachidonoylglycerol (2-AG), and 2-arachidonoylglyceryl ether (noladin ether) (7, 1216). In adult and fetal neural tissues, the two major endocannabinoids, anandamide and 2-AG, are produced on demand, usually after depolarization of postsynaptic cells or following stimulation of Gq-coupled metabotropic glutamate or muscarinic acetylcholine receptors (7, 12, 1720). Enzymes responsible for 2-AG production and metabolism in tissues are localized to well defined structures at synapses, near the axon terminals of CB1R-expressing cells (5, 7). In contrast, in peripheral tissues baseline levels of endocannabinoid production usually manifest as “endocannabinoid tone,” with poorly understood localization of the various components of the endocannabinoid system. 2-AG levels in brain homogenates and in many peripheral tissues are near its Kd for the CB1R (19), suggesting that function of endocannabinoids may not be limited to localized synaptic signaling.There is mounting evidence that endocannabinoids play important roles in peripheral cardiovascular, inflammatory, intestinal, and metabolic regulation (2124). 2-AG is produced by diacylglycerol-lipase (DAGL) after cleavage of the fatty-acid in the sn-1 position of diacylglycerol (DAG) (19, 25). Phospholipase C activation by Gq/11 protein-coupled receptors produces DAG, which can serve as a substrate for DAGL. Plasma membrane phosphoinositides are enriched in arachidonic acid in the sn-2 position (26), and DAGL is expressed ubiquitously (27), which suggests that phospholipase C-mediated cleavage of polyphosphoinositides may routinely lead to the formation of 2-AG. In accordance with this hypothesis, we have recently shown that angiotensin II- (Ang II)-mediated activation of the Gq/11-coupled AT1 angiotensin receptor (AT1R) leads to DAGL-dependent activation of CB1Rs expressed in Chinese hamster ovary (CHO) cells (28).Here our aim has been to examine the possibility that 2-AG serves as a common paracrine signal generated via activation of Gq/11 protein-coupled, Ca2+-mobilizing receptors. Accordingly, we co-expressed CB1Rs and BRET-based sensors of G protein activation in CHO cells, and used these cells to detect endocannabinoid release from adjacent cells that express AT1R or other Ca2+-mobilizing GPCRs. We have further shown that activation of AT1R by Ang II increases 2-AG levels in CHO cells. These findings suggest that 2-AG is commonly released following activation of Ca2+-mobilizing GPCRs and serves as a paracrine signal to activate CB1R in neighboring cells.  相似文献   

16.
Transactivation of the epidermal growth factor receptor (EGFR or ErbB) family members, namely EGFR and ErbB2, appears important in the development of diabetes-induced vascular dysfunction. Angiotensin-(1–7) [Ang-(1–7)] can prevent the development of hyperglycemia-induced vascular complications partly through inhibiting EGFR transactivation. Here, we investigated whether Ang-(1–7) can inhibit transactivation of ErbB2 as well as other ErbB receptors in vivo and in vitro. Streptozotocin-induced diabetic rats were chronically treated with Ang-(1–7) or AG825, a selective ErbB2 inhibitor, for 4 weeks and mechanistic studies performed in the isolated mesenteric vasculature bed as well as in cultured vascular smooth muscle cells (VSMCs). Ang-(1–7) or AG825 treatment inhibited diabetes-induced phosphorylation of ErbB2 receptor at tyrosine residues Y1221/22, Y1248, Y877, as well as downstream signaling via ERK1/2, p38 MAPK, ROCK, eNOS and IkB-α in the mesenteric vascular bed. In VSMCs cultured in high glucose (25 mM), Ang-(1–7) inhibited src-dependent ErbB2 transactivation that was opposed by the selective Mas receptor antagonist, D-Pro7-Ang-(1–7). Ang-(1–7) via Mas receptor also inhibited both Angiotensin II- and noradrenaline/norephinephrine-induced transactivation of ErbB2 and/or EGFR receptors. Further, hyperglycemia-induced transactivation of ErbB3 and ErbB4 receptors could be attenuated by Ang-(1–7) that could be prevented by D-Pro7-Ang-(1–7) in VSMC. These data suggest that Ang-(1–7) via its Mas receptor acts as a pan-ErbB inhibitor and might represent a novel general mechanism by which Ang-(1–7) exerts its beneficial effects in many disease states including diabetes-induced vascular complications.  相似文献   

17.
Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine “HIP1 phosphorylation motif” (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1''s only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1''s role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.  相似文献   

18.
19.
G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5′-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly conserved feature that is divided into three segments as follows: the C-lobe tether, the active-site tether (AST), and the N-lobe tether (NLT). This domain is fully resolved in GRK5 and reveals novel interactions with the nucleotide and N-lobe. Similar to other AGC kinases, the GRK5 AST is an integral part of the nucleotide-binding pocket, a feature not observed in other GRKs. The AST also mediates contact between the kinase N- and C-lobes facilitating closure of the kinase domain. The GRK5 NLT is largely displaced from its previously observed position in other GRKs. Moreover, although the autophosphorylation sites in the NLT are >20 Å away from the catalytic cleft, they are capable of rapid cis-autophosphorylation suggesting high mobility of this region. In summary, we provide a snapshot of GRK5 in a partially closed state, where structural elements of the kinase domain C-tail are aligned to form novel interactions to the nucleotide and N-lobe not previously observed in other GRKs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号