首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This study addressed the relative importances of shrub resources on a rodent community in a sagebrush dominated shrub-steppe ecosystem in southwestern Wyoming. Direct effects of shrubs (i.e., providing rodents with food and cover) were assessed by removing shrubs from a 1.25 ha study plot and monitoring both rodent populations and their food resources. Shrub architecture and shrub-related food resources were found to be unimportant to deermice (Peromyscus maniculatus), Great Basin pocket mice (Perognathus parvus) northern grasshopper mice (Onychomys leucogaster) and Uinta ground squirrels (Spermophilus armatus), as shrub removal caused no significant changes in population sizes, sex ratios or age structure. Least chipmunks (Eutamias minimus) responded to shrub removal by leaving the plot and moving into adjacent shrubland. The montane vole (Microtus montanus) population showed a slight increase following shrub removal. Shrub removal did not alter the abundance of major rodent food resources on the plot (percent cover of herbaceous vegetation, soil seed reserves and ground-dwelling arthropods). Micrometeorological data suggested that shrubs did not significantly ameliorate a nocturnal rodent's micro-climate, but may have affected diurnal rodents' thermal loading rates by removing shade. While shrub architecture and food resources do not directly affect most of the rodents in this shrub-steppe ecosystem, shrubs may be important to rodents in a long-term time frame. Shrubs provide safe sites for germination and growth of herbaceous vegetation, thereby enhancing the diversity of the potential rodent food resources.  相似文献   

2.
Abstract: We examined the influence of both local habitat and landscape variables on mammal species abundance in a forest fragmented by road construction and in continuous forest in 8 study sites in Mt. Chirisan National Park, South Korea, from 2001 to 2004. We recorded tracks of 8 species of mammals, Siberian weasels (Mustela sibirica), yellow-throated martens (Martes flavigula), Bengal cats (Felis bengalensis), wild boars (Sus scrofa), water deer (Hydropotes inermis), roe deer (Capreolus capreolus), Korean hares (Lepus coreanus), and red squirrels (Sciurus vulgaris), on the snow on 8 2-km transects in our study areas. There were significant differences in density of snags, mean tree basal area, and in shrub coverage between the fragmented and unfragmented forest areas. We found significant differences in abundance index of tracks between the fragmented and unfragmented areas for 5 mammal species; the others had even distributions. Of the 8 mammal species analyzed, 5 species related to landscape and local vegetation variables in a stepwise approach with repeated measures. Landscape variables are significant predictors of abundance for many mammal species. Forest managers should consider multiple measures of forest fragmentation sensitivity when making forest management decisions.  相似文献   

3.
Burrowing and foraging of semi‐fossorial rodents can affect species distribution and composition. Ground squirrels dig large burrow systems for refuge from predators and temperature extremes. Burrowing and foraging around burrows by squirrels may affect habitat and resource distributions for other organisms. We examined the impact of Cape ground squirrels (Xerus inauris) on vegetation, small mammals and beetles during winter and summer in grasslands on the edge of the Namib Desert. At each burrow system and paired control site without burrows, we estimated plant cover and height using quadrats (N = 8 paired sites), small mammal abundance and species richness using mark‐recapture techniques (N = 8 paired sites) and beetle abundance and species richness using pitfall traps (N = 6 paired sites, winter only). Squirrel burrowing and foraging activities resulted in lower plant cover and height, higher small mammal abundance and lower beetle abundance and species richness. Squirrels also reduced more plant cover in winter compared to summer, but had no effect on small mammal species richness. Furthermore, plant cover and height were higher in summer, whereas small mammal abundance and species richness were higher in winter. Our results suggest that Cape ground squirrels are important ecosystem engineers that influence plant and animal communities in the Namib Desert grasslands.  相似文献   

4.
The intraspecies variability of Spermophilus relictus sensu lato was studied based on 27 measurements of skulls from 67 specimens of relict ground squirrels (S. relictus) and 66 specimens of Tien Shan ground squirrels (S. ralli), as well as six specimens of the relict ground squirrel from the Gissar Ridge (Tien Shan). A colorimetric analysis of skins of relict ground squirrels (19 specimens, including three individuals from the Gissar Ridge) and Tien Shan ground squirrels (19 specimens) was made. Significant intraspecies variability was found in the relict and Issyk-Kul ground squirrels, whereas the interspecies differences were small, raising questions about the species independence of the Tien Shan ground squirrel (S. ralli).  相似文献   

5.
Riparian zones in agricultural landscapes provide linear non-crop habitats for a variety of plant and mammal species, and hence are an important component of biodiversity. To date, variable responses of abundance, species richness, and species diversity of small mammals have been recorded in riparian and upland habitats. To address this variability, we provide a detailed analysis of seasonal changes in abundance and diversity of terrestrial small-mammal communities over a 7-year period within an agricultural landscape in south-central British Columbia, Canada. We tested the hypotheses (H) that abundance, species richness, and species diversity of communities of small mammals (H1), and demographic parameters of reproduction, recruitment, and survival of the major species: deer mouse (Peromyscus maniculatus) and montane vole (Microtus montanus) (H2), would be higher in riparian than upland habitats. Mean total abundance of small mammals was higher in summer and winter, and species richness higher in summer, in riparian than hedgerow habitats. Winter population data supported the total and species abundance patterns for small mammals, but species richness was similar, and diversity lower, in riparian than hedgerow sites during winter periods. Deer mice were the dominant species in terms of abundance and reproductive output for pregnancies and recruitment, but not survival, in riparian sites. Montane voles were similar in abundance and demographic parameters in the two habitats. House mice (Mus musculus) preferred hedgerows and wandering shrews (Sorex vagrans) riparian sites. Demographic parameters for deer mice and montane voles indicated that both riparian and hedgerow sites were “source” rather than “sink” habitats, and likely contribute to maintenance of mammal diversity in agricultural landscapes.  相似文献   

6.
Mixed hardwood forests of the northeast United States support a guild of granivorous/omnivorous rodents including gray squirrels (Sciurus carolinensis), eastern chipmunks (Tamias striatus), and white-footed mice (Peromyscus leucopus). These species coincide geographically, co-occur locally, and consume similar food resources. Despite their idiosyncratic responses to landscape and patch variables, patch occupancy models suggest that competition may influence their respective distributions and abundances, and accordingly their influence on the rest of the forest community. Experimental studies, however, are wanting. We present the result of a large-scale experiment in which we removed white-footed mice or gray squirrels from small, isolated forest fragments in Dutchess County, New York, and added these mammals to other fragments in order to alter the abundance of these two species. We then used mark–recapture analyses to quantify the population-level and individual-level effects on resident mice, squirrels, and chipmunks. Overall, we found little evidence of competition. There were essentially no within-season numerical responses to changes in the abundance of putative competitors. Moreover, while individual-level responses (apparent survival and capture probability) did vary with competitor densities in some models, these effects were often better explained by site-specific parameters and were restricted to few of the 19 sites we studied. With only weak or nonexistent competition among these three common rodent species, we expect their patterns of habitat occupancy and population dynamics to be largely independent of one another.  相似文献   

7.

Aim

Grazing intensity and fire patterns across the Eurasian steppes have changed dramatically over the past decades due to the collapse of the Soviet Union in 1991, and Kazakhstan is now a global fire hotspot. The implications of these changes for ecosystem functioning are largely unclear. We aimed to understand the effects of changed grazing intensity and fire frequency on a key ecosystem engineer, the yellow ground squirrel Spermophilus fulvus, on a very large scale.

Location

Kazakhstan.

Methods

Ground squirrels were surveyed in an area of ca. 100,000 ha in the dry steppe of central Kazakhstan, using hierarchical distance sampling at more than 200 random points, stratified by fire frequency and livestock grazing intensity. We modelled abundance as a function of different variables, grouped at the landscape scale (fire and grazing), meso-scale (soil and vegetation structure) and at burrow scale (plant traits such as palatability, digestibility and nutrient content).

Results

Ground squirrels prefer areas of a high wormwood cover (Artemisia spp.) and high plant species richness, which are moderately grazed, preferably by cattle, with only rare fire occurrence. High squirrel densities were also related to the availability of nitrogen-rich plants of high nutritional value for herbivores.

Main Conclusions

Yellow ground squirrels seem to reach their density optima by balancing trade-offs between optimal foraging in areas of short, nutrient-rich vegetation and a good visibility of approaching predators. Post-Soviet changes in grazing pressure, resulting in higher fire recurrence rates due to grass encroachment and litter accumulation (i.e. fuel for wildfire), have likely affected the abundance of burrowing mammals and associated biodiversity across huge parts of the Eurasian steppes and semideserts.  相似文献   

8.
Understanding the causes and consequences of component change in sagebrush steppe is crucial for evaluating ecosystem sustainability. The sagebrush (Artemisia spp.) steppe ecosystem of the northwest USA has been impacted by the invasion of exotic grasses, increasing fire return intervals, changing land management practices, and fragmentation, often lowering the overall resilience to change. We utilized contemporary and historical Landsat imagery, field data, and regression tree models to produce fractional cover maps of rangeland components (shrub, sagebrush, herbaceous, bare ground, and litter) through the last 30 years. Our main goals were to (1) investigate rangeland component trends over 30 years, (2) evaluate the magnitude and direction of trends in components and climate drivers and their relationship, and (3) assess component trends influenced by climate. Results indicated that over the study period, shrub, sage, herbaceous, and litter cover decreased, while bare ground cover increased. Measured rates of change ranged from ? 0.14% decade?1 for shrub cover to 0.05% decade?1 for bare ground, whereas herbaceous and litter cover trends were negligible. Net landscape cover changes were consistent with expectations of climate change and disturbance producing a loss of biotic cover, and converting a portion of shrub and sagebrush to herbaceous cover. Overall, fire and related successional recovery was the greatest change agent for all components in terms of area and cover change, while increasing minimum temperature, at a rate of 0.66°C decade?1, was found to be the most significant climate driver.  相似文献   

9.
Abstract: Researchers have obtained mixed results in studies that use prebaiting to enhance small mammal trapping success. In 2004–2005 we tested the effects of prebaiting on small mammal trapping success in an exotic and invasive shrub community, Morrow's honeysuckle (Lonicera morrowii), using 4 80 × 120-m live trapping grids at Fort Necessity National Battlefield in Fayette County, Pennsylvania, USA. We randomly assigned traps to 1 of 3 trapping methods: we prebaited one-third of the traps 2 nights (n = 3,508 trap-nights), one-third one night (n = 3,492 trap-nights), and one-third had no prebaiting (n = 3,509 trap-nights). We compared small mammal richness, diversity, and relative abundance (no. captures/100 trap-nights) of white-footed mice (Peromyscus leucopus; n = 462 captures), meadow voles (Microtus pennsylvanicus; n = 89 captures), meadow jumping mice (Zapus hudsonius; n = 221 captures), masked shrews (Sorex cinereus; n = 87 captures), and shorttail shrews (Blarina brevicauda; n = 78 captures) among prebaited traps and non-prebaited traps. On the first day of trapping, as well as all 4 days combined, richness, diversity, and relative abundance for all species were similar among traps that we had prebaited for 2 nights, one night, and zero nights (P = 0.856). Moreover, total number of captures was similar among prebaiting treatments (P = 0.197). These results suggest that prebaiting does not enhance trapping success for small mammals in a landscape dominated by a dense, exotic shrub. We recommend that managers do not employ prebaiting in areas with similar small mammal species composition in an attempt to increase trapping success, as we did not record a difference in trapping success in prebaited traps compared to non-prebaited traps.  相似文献   

10.
In shrubland ecosystems, shrubs as ecosystem engineers play an important role in structuring ground beetle communities. However, the influence of shrub vegetation on the distribution and diversity of ground beetles remains unknown in Gobi desert, northwest China, where shrubland is a major biome type. Using Gobi shrubland dominated by shrub species Nitraria sphaerocarpa and Reaumuria soongorica as a model system, we sampled ground beetle communities using a pitfall trapping method under canopies of both shrubs and in intershrub bare areas during spring, summer and autumn corresponding to the main period of beetle activity. Simultaneously, physical environment of the three microhabitats and plant characteristics of both shrubs were measured. We determined whether shrubs and species identity influence ground beetle distribution and diversity patterns and whether the response of beetles to the presence and species of shrubs is consistent across species. At the community level, total beetle abundance and species richness were significantly greater under shrubs than in intershrub bare areas, whereas more beetles were captured under N. sphaerocarpa than under R. soongorica. At the population level, eight dominant beetle species responded differently to the presence and species of shrubs. The abundance of Anatolica sp., Carabus sp., Cyphogenia chinensis, Microdera sp. and Sternoplax setosa was consistently much greater under shrubs than in intershrub bare areas, whereas the abundance of Blaps gobiensis, Lethrus apterus and Pterocoma reitteri under shrubs was similar to that in intershrub bare areas. The shrub N. sphaerocarpa was commonly preferred by Anatolica sp., C. chinensis and S. setosa, whereas the shrub R. soongorica was commonly preferred by L. apterus, but the abundance of B. gobiensis, Carabus sp., Microdera sp. and P. reitteri was unaffected by shrub species. Differences in the abundance, species richness and composition of ground beetles among microhabitat types were largely related to among-microhabitat differences in the physical environment and resource availability. Our results suggest that shrubs and species identity play key roles in structuring ground beetle communities, but their influence differed between species. This study emphasizes the importance of protecting shrub habitats for the maintenances of beetle biodiversity in this Gobi desert ecosystem.  相似文献   

11.
Understanding how species have responded to strong climatic fluctuations accompanying glacial-interglacial cycles is critical to predicting their likely responses to future climate change, and therefore can help guide conservation strategies. Using molecular phylogeography and ecological niche modelling, we aimed to understand how a newly recognized cryptic montane mammal (Spermophilus taurensis, Taurus ground squirrels) has responded to global climate changes through the Late Quaternary glacial-interglacial cycles as a means to better predict their likely responses to future climate change. Accordingly, 51 cytochrome b mitochondrial DNA sequences from throughout the known distribution of Taurus ground squirrels were used to investigate the intraspecific diversification. Besides molecular phylogeography, ecological niche modelling was also employed to get insights into possible climate-driven altitudinal range shifts in the past (the Last Glacial Maximum, 22 kya and the Mid-Holocene, 6 kya) and in the future (2050). Taurus ground squirrels survived the Late Quaternary glacial-interglacial cycles by altitudinal migrations without large geographical displacements. As warming occurred from the Last Glacial Maximum to the Mid-Holocene to the present, the potential distribution of Taurus ground squirrels shifted towards higher altitudes, resulting in a smaller range in the present. As warming continues, the potential distribution of Taurus ground squirrels will continue to shift towards higher altitudes, resulting in a much smaller range in the future. Particular sources of concern are the synergistic effects of future climate change and anthropogenic impacts on Taurus ground squirrels and their montane environments.  相似文献   

12.
Understanding the relationships among community structure, vegetation structure and availability of food resources are a key to unravelling the ecological processes that structure biological communities. In this study, we tested (i) whether the composition of small mammal communities changed across gradients in habitat quality in tropical forest fragments, and (ii) whether any observed change could be explained by the functional traits of species. We sampled 24 trapping grids in fragments of semi‐deciduous forest, in each of two 6‐month periods. We considered each trapping grid as a sampling unit, for which we collected three datasets: an environmental matrix (vegetation structure and food resource availability), the abundance of small mammal species (community structure) and a matrix of functional traits (ecological and morphological traits which express tolerance to habitat disturbance and trophic guild). We used an RLQ approach to evaluate the association between traits and environmental gradients. Forest‐specialist and scansorial–arboreal species were associated with more complex habitat that had greater litter and canopy cover and more fallen logs. In relation to trophic guilds, granivore (fruit seeds), insectivorous and omnivorous species were also associated with higher complexity habitat, while frugivores were associated with shrub cover and availability of fruits. We conclude that functional traits (habitat use, use of vertical strata and diet) provide valuable insights into the distribution of small mammals along gradients of habitat quality in tropical forest fragments. We highlight that communities studies in fragmented landscapes should investigate the different components of biodiversity not only in landscape‐scale but also in habitat scale. Abstract in Portuguese is available with online material.  相似文献   

13.
The establishment of plantations is impacting the large mammal populations of the Kilombero Valley, Tanzania. Animal spoors were used as a proxy for activity to determine the influence of teak stand age on mammals. Habitat variables were compared between different aged stands to investigate the relationship between mammal activity and vegetation characteristics. Vegetation surveys found plantation composition to differ with age; with young stands characterized by slender teak trees, limited leaf litter, abundant grass layer and substantial bare ground. Older plantations contained a high leaf litter layer and dead wood, low grass abundance and minimal bare ground. Spoor transects revealed that mammal species number decreased as the teak matured. Of those vegetation variables tested, grass and bare ground abundance explained significantly the variation in species number and in individual species' habitat use between differently aged stands; therefore this habitat use was influenced by the foraging value of the plantation. This study showed that several species (some of which warrant conservation attention, such as elephant) use plantations <6 years old to a greater extent than plantations >6 years. Thus, there is a need for conservation measures, such as wildlife corridors and staggered teak planting to be continued, allowing large mammal movements in the valley.  相似文献   

14.
Competition among males for mates may partially explain the predominant dispersal of juvenile male California ground squirrels (Spermophilus beecheyi). I tested the generality of this hypothesis by comparing dispersal patterns in many species of mammals. In most polygynous and promiscuous species of mammals, juvenile males are the predominant dispersers. In most monogamous species of mammals, juvenile males and juvenile females are predominant dispersers with little distinction as to sex. While many factors may influence dispersal, achieving outcrossing and advantages in competition for mates are most likely to explain predominant dispersal by juvenile males in many mammal species.  相似文献   

15.
该文选取桂林岩溶石山檵木群落不同恢复阶段(灌木阶段、乔灌阶段和小乔林阶段)作为研究对象,探究凋落物层酶对凋落物分解速率的影响。结果表明:不同恢复阶段凋落物经1 a分解后,凋落物剩余率分别为灌木阶段(59.58%)、乔灌阶段(61.79%)和小乔林阶段(62.02%)。不同恢复阶段凋落物分解速率随演替的进行而减小。3个不同恢复阶段凋落物层多酚氧化酶、脲酶、蔗糖酶活性均在12月份最低,多酚氧化酶活性均在3月份最高,脲酶和蔗糖酶活性均在6月份最高。3个恢复阶段纤维素酶活性变化规律趋势一致,均在6月份酶活性最高,灌木阶段纤维素酶活性在3月份最低,乔灌阶段和小乔林阶段纤维素酶活性均在9月份最低。3个不同恢复阶段的凋落物层酶活性在不同时期均表现为蔗糖酶脲酶纤维素酶多酚氧化酶。不同恢复阶段凋落物层酶活性对凋落物分解速率影响不同。灌木阶段凋落物层蔗糖酶活性与分解速率呈显著正相关(P 0.05),乔灌阶段脲酶活性与分解速率呈显著正相关(P 0.05),小乔林阶段各酶活性与分解速率相关不显著。蔗糖酶、脲酶和多酚氧化酶是影响灌木阶段凋落物分解速率的重要因素,脲酶、纤维素酶和多酚氧化酶是影响乔灌和小乔林阶段分解速率的重要因素。  相似文献   

16.
Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among‐habitat and within‐habitat iFD (i.e., among‐ and within‐plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short‐term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red‐backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their “primary habitat”). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within‐habitat type iFD, best explained variation in M. gapperi diet, while models representing internal filters and external filters (e.g., climate), which suppress within‐habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.  相似文献   

17.
Sixteen percent of California ground squirrels (Spermophilus beecheyi) were found to be shedding an average of 53,875 Cryptosporidium parvum oocysts/g of feces. Male squirrels had a higher prevalence and higher intensity of shedding than did female squirrels. The majority of C. parvum isolates matched a bovine-murine genotype, with a few isolates resembling a porcine genotype. Higher intensities of shedding by males may enhance dissemination and genotypic mixing of this protozoa given males' proclivity to disperse to nonnatal colonies.  相似文献   

18.
Wildlife-Habitat Restoration in an Urban Park in Southern California   总被引:2,自引:0,他引:2  
Within an urban park in southern California, the relationship between the structure and floristics of vegetation and the distribution, abundance, and behavior of wildlife was studied in relatively undisturbed areas (San Luis Rey) and in contiguous areas (Guajome Park) in need of restoration. These data were used to develop recommendations for the enhancement of native animal species in the park. The abundance of amphibians and reptiles was highest in native upland scrub and willow (Salix)-riparian vegetation types, and lowest in dry, disturbed sites. Western fence lizards (Sceloporus occidentalis) were the most abundant reptile throughout both study areas. Overall, bullfrogs (Rana catesbiana), an exotic species, were the dominant amphibians; the native Pacific treefrog (Hyla regilla) was rare throughout. At both study areas, the small mammal community was dominated by western harvest mice (Reithrodontomys megalotis) and deer mice (Peromyscus maniculatus) and, to a lesser extent, by brush mice (P. boylii) and exotic house mice (Mus musculus). Negative correlations in abundance existed between house mice and harvest mice, and between house mice abundance and overall small mammal abundance. In riparian sites, cottonwood (Populus fremontii) and various height classes of willow were the dominant factors in the majority of bird abundance–habitat‘correlations and where foraging activities were concentrated. Recommendations for enhancing native animal species include reduction of marsh sedimentation, removal of feral species, and development of connections between the park and nearby natural areas. A corridor of native riparian vegetation (primarily cottonwood-willow) should be developed to replace the existing agricultural fields, thereby linking Guajome with the San Luis Rey River.  相似文献   

19.
B Abbotts  L C Wang  J D Glass 《Cryobiology》1979,16(2):179-183
In order to examine evidence for a blood-borne “trigger” for mammalian hibernation, serum dialyzate from hibernating Richardson's ground squirrels (Spermophilus richardsonii) was injected into summer-active ground squirrels of the same species. Four independent trials involving 52 animals were performed. In all trials, no effect of the dialyzate was seen on nest building, weight gain or loss, or on occurrence of hibernation.  相似文献   

20.
Abstract: We tested the hypothesis that shrub canopies interact with monthly rain pulses to control litter decomposition in a sandy Monte desert, in Argentina. We assessed (i) the potential for litter decomposition of soils beneath the canopies of two dominant shrub species (Larrea divaricata and Bulnesia retama, Zygophyllaceae R. Br.) and from bare‐ground microsites or ‘openings’; (ii) litter decomposition at different spatial patches over the summer rainy season; and (iii) the interaction between vegetation patches and monthly rain pulses on short‐term litter decomposition, or decomposition pulses. In a greenhouse experiment, we found buried litter decomposition to be higher in soils from under the canopies of a dominant shrub species compared with soils from openings and sterilized controls. This, and higher nutrient concentration under shrub soils, suggest undercanopy soils may support a microbial community capable of decomposing litter at higher rates than soils in bare openings. However, ?eld trials showed that shrub patches did not affect leaf litter decomposition over the rainy season, at least for short periods. We found an interaction between shrub patches and incubation time at the end of the ?eld experiment, with higher litter decomposition rates under B. retama canopies. In a monthly ?eld experiment, we found monthly rain pulses signi?cantly explained decomposition pulses, irrespective of patch type. Our ?ndings support the hypothesis that shrub soils have a greater potential for litter decomposition, but this is not directly translated to the ?eld possibly due to interactions with abiotic factors. Rain pulses create conditions for decomposition pulses to occur at shorter time scales, whereas rainfall may interact with a dominant shrub undercanopy to control litter mass loss over longer time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号