首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The erythrocyte ferritin content was measured in patients with either idiopathic haemochromatosis or alcoholic liver disease and iron overload to define its value as a marker for an excess of tissue iron. The mean erythrocyte ferritin content in patients with untreated idiopathic haemochromatosis was increased 60-fold and fell with phlebotomy. After phlebotomy many patients had an increased red cell ferritin content despite normal serum ferritin concentrations. That this reflected persistent iron overload with inadequate phlebotomy was suggested by the higher serum iron concentrations, percentage transferrin saturation, and urinary excretion of iron after administration of desferrioxamine, together with a lower annual iron loss by phlebotomy in this group compared with patients with treated disease and normal red cell ferritin content. The mean erythrocyte ferritin content in patients with alcoholic liver disease and iron overload was increased only sevenfold, and the ratio of erythrocyte to serum ferritin clearly discriminated these patients from those with idiopathic haemochromatosis. The determination of erythrocyte ferritin content is a useful non-invasive test for diagnosing idiopathic haemochromatosis, monitoring the effect of phlebotomy in this disorder, and distinguishing patients with this disorder from those with alcoholic liver disease with iron overload.  相似文献   

2.
Venesection has been proposed as a treatment for hepatic iron overload in a number of chronic liver disorders that are not primarily linked to mutations in iron metabolism genes. Our aim was to analyse the impact of venesection on iron mobilisation in a mouse model of secondary iron overload. C57Bl/6 mice were given oral iron supplementation with or without phlebotomy between day 0 (D0) and D22, and the results were compared to controls without iron overload. We studied serum and tissue iron parameters, mRNA levels of hepcidin1, ferroportin, and transferrin receptor 1, and protein levels of ferroportin in the liver and spleen. On D0, animals with iron overload displayed elevations in iron parameters and hepatic hepcidin1 mRNA. By D22, in the absence of phlebotomies, splenic iron had increased, but transferrin saturation had decreased. This was associated with high hepatic hepcidin1 mRNA, suggesting that iron bioavailability decreased due to splenic iron sequestration through ferroportin protein downregulation. After 22 days with phlebotomy treatments, control mice displayed splenic iron mobilisation that compensated for the iron lost due to phlebotomy. In contrast, phlebotomy treatments in mice with iron overload caused anaemia due to inadequate iron mobilisation. In conclusion, our model of secondary iron overload led to decreased plasma iron associated with an increase in hepcidin expression and subsequent restriction of iron export from the spleen. Our data support the importance of managing hepcidin levels before starting venesection therapy in patients with secondary iron overload that are eligible for phlebotomy.  相似文献   

3.

Background & Aims

Hepatic iron is increased in dysmetabolic iron overload syndrome (DIOS). Whether this reflects elevated body iron stores is still debated. The study was aimed at assessing body iron stores in DIOS patients by calculating the amount of mobilized iron (AMI).

Methods

We conducted a prospective case-control study comparing AMI in 12 DIOS patients and 12 overweight normoferritinemic subjects matched on BMI and age. All participants were phlebotomized until serum ferritin dropped ≤ 50μg/L.

Results

The two groups were comparable with respect to metabolic abnormalities and differed according to serum ferritin levels only. AMI was significantly (p<0.0001) higher in DIOS (2.5g±0.7) than in controls (0.8g±0.3). No side effects were related to phlebotomies.  相似文献   

4.
The hypothesis according to which iron overload could be harmful has been extensively and controversially discussed in the literature. One underlying pathological mechanism may be elevated oxidative stress. Thus, we studied the correlation between hemochromatosis and an established marker of oxidative stress, 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha, iPF2alpha-III, 15-F2t-IsoP). We enrolled 21 patients with hemochromatosis, positive for the homozygous C282Y mutation in the HFE gene, and 21 healthy controls frequency-matched by age and gender in a case-control study design. The objective was to show that iron overload in HFE-related hemochromatosis is associated with increased oxidative stress assessed through 8-iso-PGF(2alpha) urinary excretion, and that oxidative stress is impacted by iron-removal treatment (phlebotomy). Study parameters were transferrin saturation, 8-iso-PGF(2alpha) urine excretion, transferrin, ferritin, serum iron, and vitamins A and E for all participants. Iron concentration in the liver and non-transferrin-bound iron were measured in patients only. We found a significant difference in 8-iso-PGF2alpha in patients (245 [interquartile range 157-348] pg/mg creatinine) compared with controls (128 [106-191] pg/mg creatinine, P = 0.002). Vitamin A was significantly reduced in cases (0.34 [0.25-1.83] microg/ml compared to 3.00 [2.11-3.39] microg/ml, P < 0.001), while vitamin E did not show a significant difference in cases (14.7 [11.5-18.1] microg/ml) compared with controls (14.9 [13.1-19.2] microg/ml, P = 0.52). After phlebotomy treatment and normalization of the iron parameters in the hemochromatosis group, serum vitamin A levels were significantly increased (1.36 [1.08-1.97] microg/ml, P = 0.035 vs. baseline, P < 0.001 vs. controls) and 8-iso-PGF2alpha urinary excretion was lowered to control levels (146 [117-198] pg/mg creatinine, P = 0.38 vs. controls). In our study, HFE-related hemochromatosis was associated with increased oxidative stress and hypovitaminemia A in C282Y homozygotes. The increased oxidative stress was reversible by normalization of the iron load by phlebotomy. Thus, phlebotomy is an effective and adequate means for reducing oxidative stress in these patients.  相似文献   

5.
1. A solid phase immunoradiometric assay using anti-serum coated polystyrene tubes, is described for the assay of porcine serum ferritin. 2. The mean concentration of ferritin in the serum of both male and female pigs (Sus scrofa) was 12.1 micrograms/l +/- 8.7 micrograms (range less than 1-35 micrograms/l) and no sex differences were observed in 40 pigs from 1 day to 4 years old. 3. Serum ferritin increased with increasing body iron stores in iron loaded pigs as assessed by hepatic iron concentration. 4. The assay is sensitive (detecting less than 1 microgram/l), reproducible, specific and it does not cross-react with human or rat ferritin.  相似文献   

6.
Ferritin in liver, plasma and bile of the iron-loaded rat   总被引:2,自引:0,他引:2  
Rats were loaded with iron. With overload, up to a 10-fold increase of the iron and ferritin protein content of the livers was measured. The plasma ferritin concentration increased gradually with the ferritin concentration in the liver. The ferritin concentration in the bile increased also and was in the same range as in the plasma. The ratio plasma ferritin concentration to bile ferritin concentration in individual rats decreased in the case of considerable iron overload. After intravenous injection of liver ferritin, less than 2% of the ferritin concentration that disappeared from the blood was found to be in the bile. Isoelectric focussing revealed that the microheterogeneity of liver and bile ferritin were identical, but slightly different from plasma ferritin. These results indicate that ferritin was not solely leaking from the plasma to the bile. Together with ferritin, iron accumulated in the bile. The iron content of the bile ferritin was in the same range as in fully iron-loaded liver ferritin. It is likely that ferritin in the bile is excreted by the liver and consists of normal iron-loaded liver ferritin molecules. In all circumstances, the amount of iron in the bile was much higher than could be accounted for by transport by the bile ferritin. The ferritin protein to iron ratio in the bile was 0.1-1.2, which was in the same range as was measured in isolated lysosomal fractions of the liver. Those results agree with the supposition that ferritin and iron in the bile are excreted by the liver though lysosomal exocytosis.  相似文献   

7.

Objective

During the last 10 years we have experienced an increasing number of referrals due to hyperferritinemia. This is probably due to increased awareness of hereditary hemochromatosis, and the availability of a genetic test for this condition. Most of these referred patients were over-weight middle-aged men with elevated ferritin levels, but without the hemochromatosis-predisposing gene mutations. We evaluated the relationship between hyperferritinemia and the metabolic syndrome in 40 patients.

Methods

Forty consecutive patients referred for hyperferritinemia were investigated. The examination programme included medical history, clinical investigation and venous blood samples drawn after an overnight fast. This resulted in 34 patients with unexplained hyperferritinemia, which were further examined. Liver biopsy was successfully performed in 29 subjects. Liver iron stores were assessed morphologically, and by quantitative phlebotomy in 16 patients.

Results

The majority of the patients had markers of the metabolic syndrome, and 18 patients (52%) fulfilled the IDF-criteria for the metabolic syndrome. Mean body mass index was elevated (28,8±4,2), mean diastolic blood pressure was 88,5±10,5 mmHg, and mean fasting insulin C-peptide 1498±539 pmol/l. Liver histology showed steatosis and nuclear glycogen inclusions in most patients (19 out of 29). Only four patients had increased iron stores by histology, of which two could be explained by alcohol consumption. Fourteen of 16 patients normalized ferritin levels after phlebotomy of a cumulative blood amount corresponding to normal iron stores. Ferritin levels were significantly related to insulin C-peptide level (p<0.002) and age (p<0.002).

Conclusion

The present results suggest that liver steatosis and insulin resistance but not increased iron load is frequently seen in patients referred for suspected hemochromatosis on the basis of hyperferritinemia. The ferritin level seems to be positively associated to insulin resistance.  相似文献   

8.
The value of tests for the detection of body iron overload was investigated in 8 aptients with clinically manifest primary hemochromatosis, 12 patients with cirrhosis and iron overload and 20 patients with liver disease and low or normal iron stores. Iron overload was defined as the presence of stainable iron in more than 50% of hepatocytes in a liver biopsy specimen. The percentages of patients with a true-positive (abnormal) or true-negative (normal) result were: serum iron concentration 65%, transferin saturation 85%, serum ferritin concentration 78%, serum ferritin:serum glutamic oxaloacetic transaminase (SGOT) index 78%, percent iron absorption 58%, percent iron absorption in relation to serum ferritin concetration 80% and percent iron absorption in relation to serum ferritin:SGOT index 93%. The calculated predictive value of a normal test result for the exclusion of iron overload in patients with liver disease, a group with an assumed prevalence of iron overload of 10%, was 98% to 99% for transferrin saturation and serum ferritin concentration used alone and 100% for these measures used together; the predictive value of an abnormal result for the diagnosis of iron overload was less than 50% for all of the above measures used alone or in combination. Hence, in patients with an increased serum ferritin concentration or transferrin saturation, or both, determination of the hepatocellular iron content of a specimen from a percutaneous liver biopsy is required for the diagnosis of iron overload.  相似文献   

9.
A serum ferritin concentration of below 15 microgram/l is accepted as indicating diminished iron reserves in an otherwise normal person. In patients with inflammatory disease this lower limit of normality may be inappropriate as inflammation may directly stimulate the production of ferritin protein. Results obtained in a survey of 150 patients with early inflammatory joint disease suggest that a ferritin concentration of 55 microgram/l is a more appropriate lower limit of normality.  相似文献   

10.
The association between obesity and iron status has a long history and is still receiving attention. However comparative analysis of the association between general obesity (BMI) and visceral obesity (waist circumference) with iron status has not been extensively researched. The aim of the present study is thus to determine if body mass index and waist circumference have the same correlation with iron status. One thousand one hundred and thirty people (225 men and 905 women) aged 30 years and above participated in this study. Anthropometric parameters, haemoglobin, iron and total iron binding capacity concentrations were measured using standard methods. Percentage transferrin saturation was calculated and ferritin concentrations were measured using an enzyme linked immunosorbent assay. Obese or overweight women had significantly lower iron and transferrin saturation concentration when compared to non-obese women. In contrast, women with high waist circumference had comparable plasma iron and transferrin saturation to women with normal waist circumference. Partial correlation analysis and linear regression analysis showed that BMI is negatively and significantly associated with plasma iron, transferrin saturation, Hb and ferritin concentration, whilst waist circumference is positively but insignificantly associated with plasma iron, transferrin saturation, Hb and ferritin concentration. Binary regression analysis showed that obese or overweight people are more likely to have iron deficiency, whilst those with raised waist circumference are more likely to have iron overload. Multivariate analysis showed that body mass index is negatively and significantly associated with low iron status, while waist circumference is positively and insignificantly associated with iron status. This is supported by a comparison of plasma iron, transferrin saturation and ferritin concentrations in participants with high body mass index and normal waist circumference and participants with normal body mass index and high waist circumference to those participants having normal body mass index and normal waist circumference. The present study suggests that in women body mass index is associated with low plasma iron, transferrin saturation and ferritin concentrations, while waist circumference is associated with high plasma iron, transferrin saturation and ferritin concentrations.  相似文献   

11.
In iron deficiency anaemia basic red cell content of ferritin is appreciably reduced. This variable was determined in 62 patients with rheumatoid arthritis to evaluate conventional laboratory indices for iron deficiency in the anaemia of rheumatoid arthritis. For 23 patients with rheumatoid arthritis and normocytic anaemia irrespective of plasma ferritin concentration, red cell ferritin content did not differ significantly from that for non-anaemic patients with rheumatoid arthritis. For 27 patients with rheumatoid arthritis and microcytic anaemia, the mean red cell ferritin content for patients with a plasma ferritin concentration in the 13-110 micrograms/l range was appreciably reduced. It was indistinguishable from that for patients with rheumatoid arthritis and classical iron deficiency anaemia, indicated by plasma ferritin concentrations of less than 12 micrograms/l. In contrast, the mean red cell ferritin content for patients with rheumatoid arthritis, microcytic anaemia, and plasma ferritin concentrations above 110 micrograms/l did not differ from that for patients with rheumatoid arthritis and normocytic anaemia. Oral treatment with iron in patients with rheumatoid arthritis, microcytic anaemia, and appreciably reduced red cell ferritin concentrations was accompanied by significant increases in haemoglobin concentration (p less than 0.01), mean corpuscular volume (p less than 0.01), and red cell ferritin contents (p less than 0.05). This treatment, however, did not produce any appreciable change in haemoglobin concentration in patients with rheumatoid arthritis, normocytic anaemia, and normal red cell ferritin contents. These findings suggest that the indices for iron deficiency in patients with rheumatoid arthritis and anaemia should include peripheral blood microcytosis together with a plasma ferritin concentration of less than 110 micrograms/l.  相似文献   

12.
1. The ferritin content of liver and spleen in normal and iron-loaded rats decreased during repeated phlebotomy. 2. During increased iron demand, ferritin is degraded in toto. 3. With the ESI and EELS technique the iron distribution was followed in different cell types and cellular compartments. 4. We have demonstrated two methods of iron mobilisation: (a) catabolism of lysosomal ferritin in toto and (b) delivery of ferritin from parenchymal cell into the bile and degradation of ferritin in toto.  相似文献   

13.
Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype.  相似文献   

14.
Sheep were treated with large amounts of copper (20 mg of CuSO4,5H2O/kg body wt. per day) for 9 weeks to examine the effect of copper excess on iron metabolism. In addition to confirming that massive haemolysis and accumulation of copper occurs in the liver, kidney and plasma after 7 weeks of exposure to excess copper, it was observed that excess copper produced an increased plasma iron concentration and transferrin saturation within 1 week. Further, iron preferentially accumulated in the spleen between 4 and 6 weeks of copper treatment, producing 3-fold increases in the iron content of both the ferritin and non-ferritin fractions. A 3-4 fold increase was also observed in the amount of ferritin that could be isolated from the spleen. The copper treatment had little or no effect on the concentration of iron in the liver and bone marrow. The following properties of erythrocytes were also unaffected by copper treatment: size, haemoglobin content and pyruvate kinase activity, although the erythrocyte concentration of copper increased after 6 weeks. Copper accumulated in the spleen between 6 and 9 weeks, probably owing to the phagocytosis of erythrocytes containing high concentrations of copper. The data suggest that copper excess influences iron metabolism, initially by causing a compensated haemolytic anaemia, and later by interfering with re-utilization of iron from ferritin in the reticuloendothelial cells of the spleen.  相似文献   

15.
Ferritin, which includes twenty-four light and heavy chains in varying proportions in different tissues, is primarily responsible for maintaining the body's iron metabolism. Its normal value is between 10 and 200 ngmL?1 in men and between 30 and 300 ngmL?1 in women. Iron is delivered to the tissue via them, and they act as immunomodulators, signaling molecules, and inflammatory markers. When ferritin level exceeds 1000 µgL-1, the patient is categorized as having hyperferritinemia. Iron chelators such as deferiprone, deferirox, and deferoxamine are currently FDA approved to treat iron overload. The inflammation cascade and poor prognosis of COVID-19 may be attributed to high ferritin levels. Critically ill patients can benefit from deferasirox, an iron chelator administered orally at 20–40 mgkg?1 once daily, as well as intravenous deferoxamine at 1000 mg initially followed by 500 mg every 4 to 12 h. It can be combined with monoclonal antibodies, antioxidants, corticosteroids, and lactoferrin to make iron chelation therapy effective for COVID-19 victims. In this article, we analyze the antiviral and antifibrotic activity of iron chelators, thereby promoting iron depletion therapy as a potentially innovative treatment strategy for COVID-19.  相似文献   

16.
Iron stores at birth are essential to meet iron needs during the first 4–6 months of life. The present study aimed to investigate iron stores in normal birth weight, healthy, term neonates. Umbilical cord blood samples were collected from apparently normal singleton vaginal deliveries (n=854). Subjects were screened and excluded if C-reactive protein (CRP) > 5 mg/l or α1-acid glycoprotein (AGP) > 1 g/l, preterm (<37 complete weeks), term < 2500g or term > 4000g. In total, 762 samples were included in the study. Serum ferritin, soluble transferrin receptor (sTfR), hepcidin, and erythropoietin (EPO) were measured in umbilical cord blood samples; total body iron (TBI) (mg/kg) was calculated using sTfR and ferritin concentrations. A total of 19.8% newborns were iron deficient (ferritin 35 μg/l) and an additional 46.6% had insufficient iron stores (ferritin < 76 μg/l). There was a positive association between serum ferritin and sTfR, hepcidin, and EPO. Gestational age was positively associated with ferritin, sTfR, EPO, and hepcidin. In conclusion, we demonstrate a high prevalence of insufficient iron stores in a Chinese birth cohort. The value of cord sTfR and TBI in the assessment of iron status in the newborn is questionable, and reference ranges need to be established.  相似文献   

17.
The short term response of the L-6 cell line of rat skeletal myoblasts to elevated extracellular iron concentrations was studied. It was found in all cases that iron as the nitrilotriacetate (NTA) chelate was effective at donating iron to the cells and at stimulating ferritin synthesis. After 48 h in 50 microM ferric NTA, the cellular ferritin levels rose from an undetectable level to 1.11 (+/- 0.07) ng ferritin/microgram cell protein, or 0.1% of total cell protein. Similarly, the total iron in the cells rose under the same conditions from an unmeasurable level to plateau at over 10 fmol iron/cell. In addition, it was found that these cells synthesize ferritin in response to iron in a dose-dependent manner over a range of iron concentrations from 5-1000 microM. A sensitive and specific immunoradiometric assay for rat ferritin was used in these studies to quantitate ferritin in cell lysates.  相似文献   

18.
Iron overload is relatively common and is now detected more frequently because of inclusion of serum iron measurement in automated clinical chemistry panels. Secondary hemosiderosis and hemochromatosis result from increased iron absorption associated with increased erythropoiesis compensating for hemolysis, increased dietary iron, inappropriate prolonged oral iron therapy or chronic multiple transfusions. Primary hemochromatosis is a genetic metabolic disorder associated with the HLA locus on chromosome 6 resulting in increased iron absorption, though erythropoiesis and dietary iron are normal, and abnormal diversion of iron from reticuloendothelial (RE) to parenchymal cells. A genetic increase of intracellular iron carrier is a proposed basic mechanism. Only in the cirrhotic stage of primary hemochromatosis do RE iron and serum ferritin increase. Since both serum iron and serum ferritin may remain normal in the precirrhotic stage and may be falsely positive in the absence of iron overload, direct measurement of body iron stores is often useful. Measurement of tissue iron in liver biopsy specimens is widely used. However, quantitation of total mobilizable body iron by measurement of a 6-hour urine collection after intravenous injection of 59Fe-DTPA is noninvasive, sensitive, relatively accurate, and together with other laboratory and clinical data provides a practical means of establishing the correct diagnosis and therapy early enough to minimize organ damage.  相似文献   

19.
Comparative study of human liver ferritin and spleen tissues from healthy human and patient with primary myelofibrosis was carried out using Mössbauer spectroscopy with a high velocity resolution at 295 and 90 K and with a low velocity resolution at 20 K. The results obtained demonstrated that the iron content in patient’s spleen in the form of iron storage proteins was about ten times larger than that in normal tissue. However, in the case of patient with primary myelofibrosis the magnetic anisotropy energy barrier differed from that in normal case and, probably, the iron core size was supposed to be slightly larger than that in both normal spleen tissue and normal human liver ferritin in contrast to well-known data for iron overload in patients with thalassemia accompanied by the iron-core size increase. Therefore, the iron overload in the case of patient with primary myelofibrosis may be related to increase in the ferritin content mainly. It was also found that Mössbauer hyperfine parameters for normal and patient’s spleen and normal human liver ferritin demonstrated some small differences related, probably, to some small structural variations in the ferritin iron cores of patient’s spleen.  相似文献   

20.
Thalassemic patients often exhibit high levels of oxidative stress and iron overload, which can lead to hazardous complications. Curcuminoids, extracted from the spice turmeric, are known to have antioxidant and iron-chelating properties and have been proposed as a potential upstream therapy of thalassemia. Here we have applied proteomic techniques to study the protein profile and oxidative damage in the plasma of β-thalassemia/Hb E patients before and after treatment with curcuminoids. In this study, 10 β-thalassemia/Hb E patients were treated with 500 mg curcuminoids daily for 12 months. The plasma protein profile and protein carbonyl content were determined at baseline, 6 and 12 months using two-dimensional fluorescence difference gel electrophoresis and carbonyl immunoblotting, respectively. Other hematological, clinical, and biochemical parameters were also analyzed. Twenty-six spots, identified as coagulation factors and proteins involved in iron homeostasis, showed significantly decreased intensity in thalassemic plasma, compared to those of normal subjects. Treatment with curcuminoids up-regulated the plasma levels of these proteins and reduced their oxidative damage. Serum non-transferrin bound iron, platelet factor-3 like activity, oxidative stress parameters and antioxidant enzymes were also improved after curcuminoids treatment. This study is the first proteomic study of plasma in the thalassemic state and also shows the ameliorating role of curcuminoids towards oxidative stress and iron overload in the plasma proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号