首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nutrient medium in which Aerobacter aerogenes was grown, contains a spore germination promoter (SGP) for the cellular slime mould Dictyostelium discoideum. SGP can cuase synchronous spore germination in a short time, and triggers the germination process in just a few minutes. Germination-promoting capacity of SGP decreases as it comes in contact with increasing number of spores. When spores activated by SGP are stored at 4 degrees C, they gradually return to the dormant state. SGP is comparatively heat-stable, but is unstable at pH above 10 or under 3.  相似文献   

2.
Lee, W. H. (University of Illinois, Urbana) and Z. John Ordal. Reversible activation for germination and subsequent changes in bacterial spores. J. Bacteriol. 85:207-217. 1963.-It was possible to isolate refractile spores of Bacillus megaterium, from a calcium dipicolinate germination solution, that were activated and would germinate spontaneously in distilled water. Some of the characteristics of the initial phases of bacterial spore germination were determined by studying these unstable activated spores. Activated spores of B. megaterium were resistant to stains and possessed a heat resistance intermediate between that of dormant and of germinated spores. The spontaneous germination of activated spores was inhibited by copper, iron, silver, or mercury salts, saturated o-phenanthroline, or solutions having a low pH value, but not by many common inhibitors. These inhibitions could be partially or completely reversed by the addition of sodium dipicolinate. The activated spores could be deactivated and made similar to dormant spores by treatment with acid. Analyses of the exudates from the variously treated spore suspensions revealed that whatever inhibited the germination of activated spores also inhibited the release of spore material. The composition of the germination exudates was different than that of extracts of dormant spores. Although heavy suspensions of activated spores gradually became swollen and dark when suspended in solutions of o-phenanthroline or at pH 4, the materials released resembled those found in extracts of dormant spores rather than those of normal germination exudates.  相似文献   

3.
Bacillus subtilis spores that germinated poorly with saturating levels of nutrient germinants, termed superdormant spores, were separated from the great majority of dormant spore populations that germinated more rapidly. These purified superdormant spores (1.5 to 3% of spore populations) germinated extremely poorly with the germinants used to isolate them but better with germinants targeting germinant receptors not activated in superdormant spore isolation although not as well as the initial dormant spores. The level of β-galactosidase from a gerA-lacZ fusion in superdormant spores isolated by germination via the GerA germinant receptor was identical to that in the initial dormant spores. Levels of the germination proteins GerD and SpoVAD were also identical in dormant and superdormant spores. However, levels of subunits of a germinant receptor or germinant receptors activated in superdormant spore isolation were 6- to 10-fold lower than those in dormant spores, while levels of subunits of germinant receptors not activated in superdormant spore isolation were only ≤ 2-fold lower. These results indicate that (i) levels of β-galactosidase from lacZ fusions to operons encoding germinant receptors may not be an accurate reflection of actual germinant receptor levels in spores and (ii) a low level of a specific germinant receptor or germinant receptors is a major cause of spore superdormancy.  相似文献   

4.
Abstract RasG protein levels in dormant and germinating spores of Dictyostelium discoideum strains JC1 and SG1 were estimated by Western blotting. Ras Glevels were very low in dormant spores and remained low during the lag period, regardless of whether spores were heat activated or treated with autoactivator during the early stages of spore germination. RasG levels increased late during spore swelling just prior to the emergence stage of germination. These data are consistent with a requirement for RasG during vegetative growth.  相似文献   

5.
Previous investigators using the extent of uptake of the weak base methylamine to measure internal pH have shown that the pH in the core region of dormant spores of Bacillus megaterium is 6.3 to 6.5. Elevation of the internal pH of spores by 1.6 U had no significant effect on their degree of dormancy or their heat or ultraviolet light resistance. Surprisingly, the rate of methylamine uptake into dormant spores was slow (time for half-maximal uptake, 2.5 h at 24 degrees C). Most of the methylamine taken up by dormant spores was rapidly (time for half-maximal uptake, less than 3 min) released during spore germination as the internal pH of spores rose to approximately 7.5. This rise in internal spore pH took place before dipicolinic acid release, was not abolished by inhibition of energy metabolism, and during germination at pH 8.0 was accompanied by a decrease in the pH of the germination medium. Also accompanying the rise in internal spore pH during germination was the release of greater than 80% of the spores K+ and Na+. The K+ was subsequently reabsorbed in an energy-dependent process. These data indicate (i) that between pH 6.2 and 7.8 internal spore pH has little effect on dormant spore properties, (ii) that there is a strong permeability barrier in dormant spores to movement of charged molecules and small uncharged molecules, and (iii) that extremely early in spore germination this permeability barrier is breached, allowing rapid release of internal monovalent cations (H+, Na+, and K+).  相似文献   

6.
A major event in the nutrient germination of spores of Bacillus species is release of the spores'' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores'' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.  相似文献   

7.
Bacterial endospores exhibit extreme resistance to most conditions that rapidly kill other life forms, remaining viable in this dormant state for centuries or longer. While the majority of Bacillus subtilis dormant spores germinate rapidly in response to nutrient germinants, a small subpopulation termed superdormant spores are resistant to germination, potentially evading antibiotic and/or decontamination strategies. In an effort to better understand the underlying mechanisms of superdormancy, membrane-associated proteins were isolated from populations of B. subtilis dormant, superdormant, and germinated spores, and the relative abundance of 11 germination-related proteins was determined using multiple-reaction-monitoring liquid chromatography-mass spectrometry assays. GerAC, GerKC, and GerD were significantly less abundant in the membrane fractions obtained from superdormant spores than those derived from dormant spores. The amounts of YpeB, GerD, PrkC, GerAC, and GerKC recovered in membrane fractions decreased significantly during germination. Lipoproteins, as a protein class, decreased during spore germination, while YpeB appeared to be specifically degraded. Some protein abundance differences between membrane fractions of dormant and superdormant spores resemble protein changes that take place during germination, suggesting that the superdormant spore isolation procedure may have resulted in early, non-committal germination-associated changes. In addition to low levels of germinant receptor proteins, a deficiency in the GerD lipoprotein may contribute to heterogeneity of spore germination rates. Understanding the reasons for superdormancy may allow for better spore decontamination procedures.  相似文献   

8.
AIMS: To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS: Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS: Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.  相似文献   

9.
An analysis of metabolism by measurement of respiratory quotient values indicates that reduced substances, such as lipids and/or amino acids, are the primary respiratory substrates of dormant Dictyostelium discoideum spores. The spores appear to consume both reduced substances and carbohydrates during the swelling stage of germination. The respiration of emerged myxamoebae is again dominated by the consumption of reduced substances. The pool of trehalose remains largely intact during heat-induced activation and also during postactivation lag. The initiation of spore swelling is accompanied by a decrease in the trehalose pool; the majority of trehalose is consumed before late spore swelling. Upon placing heat-activated spores under restrictive environmental conditions, swelling and trehalose hydrolysis are both prevented. Release from these conditions results in rapid swelling and hydrolysis of trehalose. Trehalase, the enzyme responsible for trehalose breakdown, is present in dormant spores at basal levels. This preformed enzyme is responsible for the hydrolysis of trehalose even though there is a significant increase in trehalase activity with the emergence of myxamoebae. RNA and protein synthesis inhibitors do not prevent trehalose hydrolysis or spore swelling. It is concluded that oxidation of reduced substances occurs in dormant, activated, and swollen spores, as well as in emerged myxamoebae of D. discoideum. Carbohydrate utilization dominates over the oxidation of reduced substances only during the swelling stage of germination.  相似文献   

10.
11.
Susceptibility to UV irradiation of B. cereus BIS-59 spores undergoing germination at various stages-dormant spores to vegetative cell stage and their ability to recover from radiation damage were studied. For a given dose of radiation, the number of spore photoproducts (SPP) formed in the DNA of dormant spores was about 5-times greater than that of thymine dimers (TT) formed in the DNA of vegetative cells. At intermediate stages of the germination cycle, there was a rapid decline in the UV radiation-induced SPP formed in DNA with a concomitant increase in the UV radiation-induced TT formed in DNA. Bacterial spores undergoing germination (up to 3 hr) in the low nutrient medium (0.3% yeast extract) displayed much higher resistance to UV radiation than those germinating in the rich nutrient medium, even though there was no discernible difference under the two incubation conditions in respect of the extent of germination and the time at which the outgrowth stage appeared (3 hr). This was due to the formation TT in the DNA of spores germinating in the low nutrient as compared to that of spores germinating in the rich-nutrient medium. In UV-irradiated dormant spores, SPP formed in the spore DNA did not disappear even after prolonged incubation in the non-germinating medium. However, when the UV-irradiated dormant spores were germinated in low or rich nutrient medium, a significant proportion of SPP in DNA was eliminated. The dormant spores incubated in either of the germinating media for 15 min and then UV-irradiated were capable of eliminating SPP (presumably by monomerization) even by incubation in a non-germinating medium and in the complete absence of protein synthesis (buffer holding recovery), thereby implying that spore-repair enzymes were activated in response to initial's germination. The acquisition of photo-reactivation ability appeared in spores subjected to germination only in the rich-nutrient medium at the outgrowth stage and required de novo synthesis of the required enzymes.  相似文献   

12.
13.
The role of osmotic pressure in the germination of Nosema algerae spores   总被引:1,自引:0,他引:1  
Both the lag period and the time required for the filament and sporoplasm to emerge from Nosema algerae spores were prolonged when germination occurred under hyperosmotic conditions. Polyethylene glycol (PEG) and sucrose inhibited germination, first by preventing eversion of the filament, and then at higher concentrations by preventing stimulation. The size of the spore cases decreased by about 21% following germination, indicating an elastic spore wall and turgor pressure in the dormant spores. Increased pressure during germination was indicated by less osmotically-induced shrinkage in stimulated than in dormant spores and by higher concentration of solutes in the homogenates of germinated than ungerminated spores. These results are consistent with the hypothesis of a pressure increase during germination that is caused by an endogenous increase in solute concentration.  相似文献   

14.
The specific activity of cathepsin B-like, cathepsin D-like, and leucine aminopeptidase enzymes was measured in dormant, aging, and germinating spores of wild-type and mutant Dictyostelium discoideum.The activity of leucine aminopeptidase was relatively constant during spore aging and spore germination. The level of cathepsin D-like activity was highest in young dormant spores but decreased during germination or aging.The level of cathepsin B-like activity remained constant in wild-type spores which were aged for 13 days. The dormant spores of spontaneous germination mutants initially contained low levels of cathepsin B-like activity which increased during aging. Thus, there was no correlation between the level of endogenous cathepsin B activity and the ability to be autoactivated or heat-activated. The level of cathepsin B-like activity does not have a role in the generation of energy for the swelling stage of germination. Finally, the combined level of endogenous and exogenous cathepsin B activity increased more than 20-fold during the emergence of myxamoebae suggesting that the enzyme(s) may play a role at this development stage of germination.  相似文献   

15.
Summary Acids like hydrogen fluoride, hydrazoic and fluoroacetic have been shown to prevent the germination of ascospores of N. tetrasperma when dormant spores are treated. On the other hand, propionate, cysteine and others are ineffective when used in this way. When activated ascospores were treated, much lower concentrations of the acids were sufficient to poison the spores. As in other systems, these substances are most effective at a pH below their pKa.The kinetics of uptake of fluoride by dormant ascospores were studied and shown to be very different from those reported for cations. However, P32 was not absorbed by dormant ascospores, even at pH 1.5.Respiratory inhibition by azide and fluoroacetate occurred immediately after the spores were activated, but in the case of 5-nitro-2-furfuryl methyl ether no effect was observed until just before germination occurred.These results suggest that a permeability barrier exists in the dormant ascospore which disappears upon germination. Moreover, the dormant spore seems to be permeable to acids of small size but impermeable to those possessing more than 3 methylene groups or of equivalent size.This work was made possible by a grant from the Michigan-Memorial Phoenix Project of the University of Michigan to whom the authors would like to express their gratitude.  相似文献   

16.
17.
A fourfold increase in sulfhydryl content upon germination of Bacillus megaterium spores was observed by the standard fluorescein mercuric acetate assay as reported by others. However, assay of ruptured dormant spores or the use of N-ethylmaleimide and a denaturing agent on intact spores showed a constant sulfhydryl level in dormancy and in germination. The apparent increase in sulfhydryl groups observed on germination was shown to be due to inaccessibility of most sulfhydryl groups in the dormant spore to sulfhydryl reagents. The disulfide content of dormant spores showed no change on germination, nor was any evidence found for production of low-molecular-weight sulfhydryl or disulfide compounds during germination.  相似文献   

18.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

19.
The mitochondrial respiratory cytochrome contents of dormant and germinating conidia of Botryodiplodia theobromae were examined. Oxidized versus reduced difference spectra at 77 degrees K of whole mitochondria from physiologically mature germinated spores showed a typical a-band pattern for cytochromes c, b, and a, with absorption maxima at 549, 554 + 559, and 604 nm, respectively, whereas the difference spectrum of the counterpart mitochondrial fraction from dormant spores showed no cytochrome a bands. However, a fraction prepared from dormant spore mitochondria by detergent extraction and (NH4)2SO4 fractionation contained readily detectable quantities of cytochromes c and b (as shown by the a and Soret absorption bands), but it did not contain the a or Soret bands of cytochrome a observed in a counterpart preparation from germinated spores. The pyridine hemochromogen preparation from the dormant spore mitochondria contained no material that is spectroscopically characteristic of a-type heme and protoheme. These results suggest that cytochrome a is not present as a functional molecule in dormant spores. The first spectroscopically detectable cytochromes were observed in whole mitochondria at 210 min of spore germination, and the amount of each of the cytochromes increased with cell growth. A precursor of the heme porphyrin, delta-[4-14C]aminolevulinic acid, was first incorporated (at accelerating rates) into acid-insoluble spore material at 180 min of germination, which appears to be the approximate time of organization of new mitochondria in these spores.  相似文献   

20.
Under conditions that are not conducive to growth, such as nutrient depletion, many members of the orders Bacillales and Clostridiales can sporulate, generating dormant and resistant spores that can survive in the absence of nutrients for years under harsh conditions. However, when nutrients are again present, these spores can return to active growth through the process of germination. Many of the components of the spore germination machinery are conserved between spore forming members of the Bacillales and Clostridiales orders. However, recent studies have revealed significant differences between the germination of spores of Clostridium perfringens and that of spores of a number of Bacillus species, both in the proteins and in the signal transduction pathways involved. In this review, the roles of components of the spore germination machinery of C. perfringens and several Bacillus species and the bioinformatic analysis of germination proteins in the Bacillales and Clostridiales orders are discussed and models for the germination of spores of these two orders are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号