首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite considerable research efforts on the relationship between arterial geometry and cardiovascular pathology, information is lacking on the pulsatile geometrical variation caused by arterial distensibility and cardiomotility because of the lack of suitable in vivo experimental models and the methodological difficulties in examining the arterial dynamics. We aimed to investigate the feasibility of using a chick embryo system as an experimental model for basic research on the pulsatile variation of arterial geometry. Optical microscope video images of various arterial shapes in chick chorioallantoic circulation were recorded from different locations and different embryo samples. The high optical transparency of the chorioallantoic membrane (CAM) allowed clear observation of tiny vessels and their movements. Systolic and diastolic changes in arterial geometry were visualized by detecting the wall boundaries from binary images. Several to hundreds of microns of wall displacement variations were recognized during a pulsatile cycle. The spatial maps of the wall motion harmonics and magnitude ratio of harmonic components were obtained by analyzing the temporal brightness variation at each pixel in sequential grayscale images using spectral analysis techniques. The local variations in the spectral characteristics of the arterial wall motion were reflected well in the analysis results. In addition, mapping the phase angle of the fundamental frequency identified the regional variations in the wall motion directivity and phase shift. Regional variations in wall motion phase angle and fundamental-to-second harmonic ratio were remarkable near the bifurcation area. In summary, wall motion in various arterial geometry including straight, curved and bifurcated shapes was well observed in the CAM artery model, and their local and cyclic variations could be characterized by Fourier and wavelet transforms of the acquired video images. The CAM artery model with the spectral analysis method is a useful in vivo experimental model for studying pulsatile variation in arterial geometry.  相似文献   

2.
《Biorheology》1996,33(3):185-208
An analytical solution for pulsatile flow of a generalized Maxwell fluid in straight rigid tubes, with and without axial vessel motion, has been used to calculate the effect of blood viscoelasticity on velocity profiles and shear stress in flows representative of those in the large arteries. Measured bulk flow rate Q waveforms were used as starting points in the calculations for the aorta and femoral arteries, from which axial pressure gradient ▿P waves were derived that would reproduce the starting Q waves for viscoelastic flow. The ▿P waves were then used to calculate velocity profiles for both viscoelastic and purely viscous flow. For the coronary artery, published ▿P and axial vessel acceleration waveforms were used in a similar procedure to determine the separate and combined influences of viscoelasticity and vessel motion.Differences in local velocities, comparing viscous flow to viscoelastic flow, were in all cases less than about 2% of the peak local velocity. Differences in peak wall shear stress were less than about 3%.In the coronary artery, wall shear stress differences between viscous and viscoelastic flow were small, regardless of whether axial vessel motion was included. The shape of the wall shear stress waveform and its difference, however, changed dramatically between the stationary and moving vessel cases. The peaks in wall shear stress difference corresponded with large temporal gradients in the combined driving force for the flow.  相似文献   

3.
Mechanical forces have been widely recognized to play an important role in the pathogenesis of atherosclerosis. Since coronary arterial motion modulates both vessel wall mechanics and fluid dynamics, it is hypothesized that certain motion patterns might be atherogenic by generating adverse wall mechanical forces or fluid dynamic environments. To characterize the dynamics of coronary arterial motion and explore its implications in atherogenesis, a system was developed to track the motion of coronary arteries in vivo, and employed to quantify the dynamics of four right coronary arteries (RCA) and eight left anterior descending (LAD) coronary arteries. The analysis shows that: (a) The motion parameters vary among individuals, with coefficients of variation ranging from 0.25 to 0.59 for axially and temporally averaged values of the parameters; (b) the motion parameters of individual vessels vary widely along the vessel axis, with coefficients of variation as high as 2.28; (c) the LAD exhibits a greater axial variability in torsion, a measure of curve "helicity," than the RCA; (d) in comparison with the RCA, the LAD experiences less displacement (p = 0.009), but higher torsion (p = 0.03). These results suggest that: (i) the variability of certain motion parameters, particularly those that exhibit large axial variations, might be related to variations in susceptibility to atherosclerosis among different individuals and vascular regions; and (ii) differences in motion parameters between the RCA and LAD might relate to differences in their susceptibility to atherosclerosis.  相似文献   

4.
Simulations of blood flow in natural and artificial conduits usually require large computers for numerical solution of the Navier-Stokes equations. Often, physical insight into the fluid dynamics is lost when the solution is purely numerical. An alternative to solving the most general form of the Navier-Stokes equations is described here, wherein a functional form of the solution is assumed in order to simplify the required computations. The assumed forms for the axial pressure gradient and velocity profile are chosen such that conservation of mass is satisfied for fully established pulsatile flow in a straight, deformable vessel. The resulting equations are cast in finite-difference form and solved explicitly. Results for the limiting cases of rigid wall and zero applied pressure are found to be in good agreement with analytical solutions. Comparison with the experimental results of Klanchar et al. [Circ. Res. 66, 1624-1635 (1990]) also shows good agreement. Application of the model to realistic physiological parameter values provides insight as to the influence of the pulsatile nature of the flow field on wall shear development in the presence of a moving wall boundary. Specifically, the model illustrates the dependence of flow rate and shear rate on the amplitude of the vessel wall motion and the phase difference between the applied pressure difference and the oscillations of the vessel radius. The present model can serve as a useful tool for experimentalists interested in quantifying the magnitude and character of velocity profiles and shearing forces in natural and artificial biologic conduits.  相似文献   

5.
The mathematical model of Hung (Tsai and Hung, 1984) is employed to determine the wall shear rate acting on canine carotid arteries perfused in vitro. Model equations for pulsatile flow in a deformable vessel are coupled with experimental data of dynamic pressure drop, flow rate, vessel radius and radial wall motion. Derived quantities, e.g. velocity profiles and wall shear, are obtained for vessels exposed to 'normotensive' hemodynamics, 'hypertension' simulations and perfusions in which the compliance of the vessel wall is deliberately altered. Our results indicate that wall shear varies markedly as a function of the hemodynamic environment. The effects of vessel radius vs flow rate on the development of wall shear are also demonstrated. It is found that convective processes correlate with the magnitude of wall shear in the 'hypertension' simulations. The present findings and complementary published data may explain, at least in part, the variations in vessel wall transport and endothelial cell biology we observe as a function of the hemodynamic environment. For example we have documented that the exposure of canine carotids to 'hypertensive' (vs 'normotensive') hemodynamics is associated with an increased flux of lipoproteins (LDL) into the intima and luminal media. Alternations in wall compliance, on the other hand, profoundly influence endothelial shape, orientation and cytoskeletal array.  相似文献   

6.
Pressure and flow waveforms were recorded at the entrance of the circumflex coronary artery in anaesthetized dogs during artificial constriction and release of the aorta which caused noticeable variations in the coronary perfusion pressure. The beat-to-beat mean diastolic flow resulting from the autoregulation of the coronary bed in response to the pressure changes was analysed on the basis of a simple model. Flow variations were interpreted as the result of an active mechanism, triggered by the pressure changes and affecting the elastic behaviour of the vessels. The timing and the main characteristics of this response mechanism, after constrictions of varying duration, were evaluated and are discussed. The predicted variations in vessel distensibility and cross-sectional area were compared with data quoted in the literature, showing that the results of this procedure are compatible with those of in vitro measurements on isolated microvessels.  相似文献   

7.
A computational method for calculating the dynamic distensibility of the vessel wall in vivo, developed on the basis of the pressure pulse transmission, is proposed. Distensibilities of descending thoracic aorta, abdominal aorta, and femoral artery in normal dogs, and of femoral artery of a typical dog under the action of vasoactive drugs, have been calculated. In femoral artery it is compared with the values of the diameter change/pressure change. Comparison of the results clearly indicate the feasibility of the proposed method. The order of distensibility found is: descending thoracic aorta greater than abdominal aorta greater than femoral artery.  相似文献   

8.
T Fukushima  T Homma 《Biorheology》1988,25(1-2):37-48
In order to describe a possible effect of smooth muscle cell (SMC) activation on arterial wall distensibility, the present study derived a mathematical equation applicable to relaxed and contracted arterial walls. Pressure(P)-diameter(D) relationship of dog renal arteries was investigated in vitro under a cyclic loading and unloading process in the pressure range of 5-180 mmHg. Smooth muscle cells were activated by 10(-5)M norepinephrine. On the basis of the P-D curves obtained with fully contracted arteries, the vessel wall compliance dD/dP was assumed to be given by a second order polynomial of D, (formula; see text) The equation, including three parameters, Dmin, Dmax, and E, is integrated to yield the solution similar to the logistic curve as follows (formula; see text) where M(O) = (Dmax - D(O]/(D(O) - Dmin), and D(O) is the diameter at the point P = O. The constant, E, has the same dimension as the modulus of elasticity. The calculated P-D relationships coincided well with the experimental data for contracted and relaxed arteries. The most significant change due to wall contraction took place in the magnitude of M. This result, therefore, suggests that the parameter M is a good index of the degree of SMC contraction.  相似文献   

9.
The mathematical model of Hung (Tsai and Hung, 1984) is empolyed to determine the wall shear rate acting on canine carotid arteries perfused in vitro. Model equations for pulsatile flow in a deformable vessel are coupled with experimental data of dynamic pressure drop, flow rate, vessel radius and radial wall motion. Derived quantities, e.g. velocity profiles and wall shear, are obtained for vessels exposed to ‘normotensive’ hemodynamics, ‘hypertension’ simulations and perfusions in which the compliance of the vessel wall is deliberately altered. Our results indicate that wall shear varies markedly as a function of the hemodynamic environment. The effects of vessel radius vs flow rate on the development of wall shear are also demonstrated. It is found that convective processes correlate with the magnitude of wall shear in the ‘hypertension’ simulations.The present findings and complementary published data may explain, at least in part, the variations in vessel wall transport and endothelial cell biology we observe as a function of the hemodynamic environment. For example we have documented that the exposure of canine carotids to ‘hypertensive’ (vs ‘normotensive’) hemodynamics is associated with an increased flux of lipoproteins (LDL) into the intima and luminal media. Alternations in wall compliance, on the other hand, profoundly influence endothelial shape, orientation and cytoskeletal array.  相似文献   

10.
11.
A simplified in vitro model of the spinal canal, based on in vivo magnetic resonance imaging, was used to examine the hydrodynamics of the human spinal cord and subarachnoid space with syringomyelia. In vivo magnetic resonance imaging (MRI) measurements of subarachnoid (SAS) geometry and cerebrospinal fluid velocity were acquired in a patient with syringomyelia and used to aid in the in vitro model design and experiment. The in vitro model contained a fluid-filled coaxial elastic tube to represent a syrinx. A computer controlled pulsatile pump was used to subject the in vitro model to a CSF flow waveform representative of that measured in vivo. Fluid velocity was measured at three axial locations within the in vitro model using the same MRI scanner as the patient study. Pressure and syrinx wall motion measurements were conducted external to the MR scanner using the same model and flow input. Transducers measured unsteady pressure both in the SAS and intra-syrinx at four axial locations in the model A laser Doppler vibrometer recorded the syrinx wall motion at 18 axial locations and three polar positions. Results indicated that the peak-to-peak amplitude of the SAS flow waveform in vivo was approximately tenfold that of the syrinx and in phase (SAS approximately 5.2 +/- 0.6 ml/s, syrinx approximately 0.5 +/- 0.3 ml/s). The in vitro flow waveform approximated the in vivo peak-to-peak magnitude (SAS approximately 4.6 +/- 0.2 ml/s, syrinx approximately 0.4 +/- 0.3 ml/s). Peak-to-peak in vitro pressure variation in both the SAS and syrinx was approximately 6 mm Hg. Syrinx pressure waveform lead the SAS pressure waveform by approximately 40 ms. Syrinx pressure was found to be less than the SAS for approximately 200 ms during the 860-ms flow cycle. Unsteady pulse wave velocity in the syrinx was computed to be a maximum of approximately 25 m/s. LDV measurements indicated that spinal cord wall motion was nonaxisymmetric with a maximum displacement of approximately 140 microm, which is below the resolution limit of MRI. Agreement between in vivo and in vitro MR measurements demonstrates that the hydrodynamics in the fluid filled coaxial elastic tube system are similar to those present in a single patient with syringomyelia. The presented in vitro study of spinal cord wall motion, and complex unsteady pressure and flow environment within the syrinx and SAS, provides insight into the complex biomechanical forces present in syringomyelia.  相似文献   

12.
Sugihara-Seki M 《Biorheology》2000,37(5-6):341-359
To evaluate the fluid forces acting on cells adhered to a microvessel wall, we numerically studied the flow field around adherent cells and the distribution of the stresses on their surfaces. For simplicity, the cells were modeled as rigid particles attached to a wall of a circular cylindrical tube regularly in the flow direction, in a row or two rows. It was found that not the detailed shape of the model cells but their height from the vessel wall is a key determinant of the fluid forces and torque acting on them. In both arrangements of one row and two rows, the axial spacing between neighboring adherent cells significantly affects the distributions of the stresses on them, which results in drastic variations of the fluid forces with the axial spacing and the relative positions with respect to their neighboring cells. The drag force acting on an adherent cell in the vessel was evaluated to be larger than the value in the 2D chamber flow at the same wall shear stress, mainly due to much larger variations of the pressure distribution on the cell surface in the vessel flow.  相似文献   

13.
We examine the influence of vessel distensibility on the fraction of the total network flow passing through each vessel of a model vascular network. An exact computational methodology is developed yielding an analytic proof. For a class of structurally heterogeneous asymmetric vascular networks, if all the individual vessels share a common distensibility relation when the total network flow is changed, this methodology proves that each vessel will continue to receive the same fraction of the total network flow. This constant flow partitioning occurs despite a redistribution of pressures, which may result in a decrease in the diameter of one and an increase in the diameter of the other of two vessels having a common diameter at a common pressure. This theoretical observation, taken along with published experimental observations on pulmonary vessel distensibilities, suggests that vessel diameter-independent distensibility in the pulmonary vasculature may be an evolutionary adaptation for preserving the spatial distribution of pulmonary blood flow in the face of large variations in cardiac output.  相似文献   

14.

Aim

To study the effects of RD on renal artery wall function non-invasively using magnetic resonance.

Methods and Results

32 patients undergoing RD were included. A 3.0 Tesla magnetic resonance of the renal arteries was performed before RD and after 6-month. We quantified the vessel sharpness of both renal arteries using a quantitative analysis tool (Soap-Bubble®). In 17 patients we assessed the maximal and minimal cross-sectional area of both arteries, peak velocity, mean flow, and renal artery distensibility. In a subset of patients wall shear stress was assessed with computational flow dynamics. Neither renal artery sharpness nor renal artery distensibility differed significantly. A significant increase in minimal and maximal areas (by 25.3%, p = 0.008, and 24.6%, p = 0.007, respectively), peak velocity (by 16.9%, p = 0.021), and mean flow (by 22.4%, p = 0.007) was observed after RD. Wall shear stress significantly decreased (by 25%, p = 0.029). These effects were observed in blood pressure responders and non-responders.

Conclusions

RD is not associated with adverse effects at renal artery level, and leads to an increase in cross-sectional areas, velocity and flow and a decrease in wall shear stress.  相似文献   

15.

Background

High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent.

Methods and Results

We applied a 2D-FLASH retrospective-gated CINE MRI method at 9.4T to characterize atherosclerotic plaques and vessel wall distensibility in the aortic arch of aged ApoE−/− mice after injection of a contrast agent. The method enabled detection of contrast enhancement in atherosclerotic plaques in the aortic arch after I.V. injection of micelles and iron oxides resulting in reproducible plaque enhancement. Both contrast agents were taken up in the plaque, which was confirmed by histology. Additionally, the retrospective-gated CINE method provided images of the aortic wall throughout the cardiac cycle, from which the vessel wall distensibility could be calculated. Reduction in plaque size by statin treatment resulted in lower contrast enhancement and reduced wall stiffness.

Conclusions

The retrospective-gated CINE MRI provides a robust and simple way to detect and quantify contrast enhancement in atherosclerotic plaques in the aortic wall of ApoE−/− mice. From the same scan, plaque-related changes in stiffness of the aortic wall can be determined. In this mouse model, a correlation between vessel wall stiffness and atherosclerotic lesions was found.  相似文献   

16.
Individualized modeling and simulation of blood flow mechanics find applications in both animal research and patient care. Individual animal or patient models for blood vessel mechanics are based on combining measured vascular geometry with a fluid structure model coupling formulations describing dynamics of the fluid and mechanics of the wall. For example, one-dimensional fluid flow modeling requires a constitutive law relating vessel cross-sectional deformation to pressure in the lumen. To investigate means of identifying appropriate constitutive relationships, an automated segmentation algorithm was applied to micro-computerized tomography images from a mouse lung obtained at four different static pressures to identify the static pressure–radius relationship for four generations of vessels in the pulmonary arterial network. A shape-fitting function was parameterized for each vessel in the network to characterize the nonlinear and heterogeneous nature of vessel distensibility in the pulmonary arteries. These data on morphometric and mechanical properties were used to simulate pressure and flow velocity propagation in the network using one-dimensional representations of fluid and vessel wall mechanics. Moreover, wave intensity analysis was used to study effects of wall mechanics on generation and propagation of pressure wave reflections. Simulations were conducted to investigate the role of linear versus nonlinear formulations of wall elasticity and homogeneous versus heterogeneous treatments of vessel wall properties. Accounting for heterogeneity, by parameterizing the pressure/distention equation of state individually for each vessel segment, was found to have little effect on the predicted pressure profiles and wave propagation compared to a homogeneous parameterization based on average behavior. However, substantially different results were obtained using a linear elastic thin-shell model than were obtained using a nonlinear model that has a more physiologically realistic pressure versus radius relationship.  相似文献   

17.

The compliance of the proximal aortic wall is a major determinant of cardiac afterload. Aortic compliance is often estimated based on cross-sectional area changes over the pulse pressure, under the assumption of a negligible longitudinal stretch during the pulse. However, the proximal aorta is subjected to significant axial stretch during cardiac contraction. In the present study, we sought to evaluate the importance of axial stretch on compliance estimation by undertaking both an in silico and an in vivo approach. In the computational analysis, we developed a 3-D finite element model of the proximal aorta and investigated the discrepancy between the actual wall compliance to the value estimated after neglecting the longitudinal stretch of the aorta. A parameter sensitivity analysis was further conducted to show how increased material stiffness and increased aortic root motion might amplify the estimation errors (discrepancies between actual and estimated distensibility ranging from − 20 to − 62%). Axial and circumferential aortic deformation during ventricular contraction was also evaluated in vivo based on MR images of the aorta of 3 healthy young volunteers. The in vivo results were in good qualitative agreement with the computational analysis (underestimation errors ranging from − 26 to − 44%, with increased errors reflecting higher aortic root displacement). Both the in silico and in vivo findings suggest that neglecting the longitudinal strain during contraction might lead to severe underestimation of local aortic compliance, particularly in the case of women who tend to have higher aortic root motion or in subjects with stiff aortas.

  相似文献   

18.
《Biorheology》1995,32(6):655-684
This study describes the in vivo measurement of pressure drop and flow during the cardiac cycle in the femoral artery of a dog, and the computer simulation of the experiment based on the use of the measured flow, vessel dimensions and blood viscosity. In view of the experimental uncertainty in obtaining the accurate velocity profile at the wall region, the velocity pulse at the center was measured and numerical calculations were performed for the center Une instantaneous velocity and within the two limits of spatial distribution of inlet flow conditions: uniform and parabolic. Temporal and spatial variations of flow parameters, i.e., velocity profile, shear rate, non-Newtonian viscosity, wall shear stress, and pressure drop were calculated. There existed both positive and negative shear rates during a pulse cycle, i.e., the arterial wall experiences zero shear three times during a cardiac cycle. For the parabolic inlet condition, the taper of the artery not only increased the magnitude of the positive and negative shear rates, but caused a steep gradient in shear rate, a phenomenon which in turn affects wall shear stress and pressure. In contrast, for the uniform inlet condition, the flow through the tapered artery was predominantly the developing type, which resulted in reduction in magnitude of wall shear rate along the axial direction.  相似文献   

19.
Transmission characteristics of axial waves in blood vessels   总被引:2,自引:0,他引:2  
The elastic behavior of blood vessels can be quantitatively examined by measuring the propagation characteristics of waves transmitted by them. In addition, specific information regarding the viscoelastic properties of the vessel wall can be deduced by comparing the observed wave transmission data with theoretical predictions. The relevance of these deductions is directly dependent on the validity of the mathematical model for the mechanical behavior of blood vessels used in the theoretical analysis. Previous experimental investigations of waves in blood vessels have been restricted to pressure waves even though theoretical studies predict three types of waves with distinctly different transmission characteristics. These waves can be distinguished by the dominant displacement component of the vessel wall and are accordingly referred to as radial, axial and circumferential waves. The radial waves are also referred to as pressure waves since they exhibit pronounced pressure fluctuations. For a thorough evaluation of the mathematical models used in the analysis it is necessary to measure also the dispersion and attenuation of the axial and circumferential (torsion) waves.

To this end a method has been developed to determine the phase velocities and damping of sinusoidal axial waves in the carotid artery of anesthetized dogs with the aid of an electro-optical tracking system. For frequencies between 25 and 150 Hz the speed of the axial waves was between 20 and 40 m/sec and generally increased with frequency, while the natural pressure wave travelled at a speed of about 10 m/sec. On the basis of an isotropic wall model the axial wave speed should however be approximately 5 times higher than the pressure wave speed. This discrepancy can be interpreted as an indication for an anisotropic behavior of the carotid wall. The carotid artery appears to be more elastic in the axial than in the circumferential direction.  相似文献   


20.
A theoretical analysis for the problem of wave propagation in arteries is presented. Blood is treated as a Newtonian, viscous incompressible fluid. On the basis of information derived from experimental investigations on the mechanical properties of wall tissues, the arterial wall is considered to be nonlinearly viscoelastic and orthotropic. The analysis is carried out for a cylindrical artery, under the purview of membrane theory, by taking account the effect of initial stresses. The motion of the wall and that of the fluid are assumed to be axisymmetric. Particular emphasis has been paid to the propagation of small amplitude harmonic waves whose wavelength is large compared to the radius of the vessel. By employing the equations of motion of the fluid and those for the wall, together with the equations of continuity, a frequency equation is derived by exploiting the conditions of continuity of the velocity of the arterial wall and that of blood on the endosteal surface of the wall. In order to illustrate the validity of the derived analytical expressions a quantitative analysis is made for the variations of the phase velocities as well as the transmission coefficient with frequency corresponding to different transmural pressures which relate to different initial stresses. Computational results indicate that phase velocities increase with the increase of transmural pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号