首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethionine, the ethyl analogue of methionine, slightly reduced the yield of reversions of the hisC3076 frameshift marker induced by 9-aminoacridine (9AA) in an excision-proficient strain of Salmonella typhimurium, but completely abolished mutagenesis genesis by 9AA in the excision-deficient uvrB-deletion strain TA1537. No toxic effects of ethionine were apparent in either the excision-proficient or the excision-deficient strain. Because of the differential effects of ethionine on mutagenesis in the two strains, it seemed possible that an ethionine-sensitive step in the process(es) leading to fixation of 9AA-induced mutations might be compensated for by the uvrA,B,C+ excision-repair system. To further test this possibility, we used caffeine (a compound known to significantly reduce the efficacy of the excision-repair process) as a co-treatment with ethionine for cells of an excision-proficient strain exposed to 9AA. Treatment with caffeine alone or ethionine alone had very little effect on reversion yield, whereas co-treatment with the two agents abolished 9AA mutagenesis. It appeared, therefore, that either the caffeine-sensitive pathway or the ethionine-sensitive pathway needed to be functioning if 9AA-induced reversions of the hisC3076 marker were to be detected. Addition of methionine to cells of the excision-deficient strain exposed to 9AA restored their ability to be mutated by 9AA, however. In a base-pair substitution back-mutation system, ethionine slightly enhanced the yields of revertants of the trpE8 marker induced by 2-aminopurine (2AP) in both an excision-proficient strain (at all 2AP dose levels tested) and an excision-deficient strain (only at the lower dose levels). In the excision-deficient strain, doses of 2AP above 300 μg/plate were highly toxic when ethionine was also present. It was for this reason that no 2AP-induced revertants were recovered at the higher 2AP concentrations. Treatment of the trpE8 strain with methionine also enhanced the yield of 2AP-induced revertants of this marker.  相似文献   

2.
Ultraviolet-induced back mutation yields were studied in the frameshift strain of Salmonella typhimurium, LT2 hisC3076. The numbers and frequencies per 108 survivors of small and large revertant colonies were found to be affected significantly by plating density, but it was possible to detect a considerable enhancement of mutation frequency when broth (2.5%, v/v) was present in the post-irradiation plating medium. Caffeine also significantly enhanced the yields of UV-induced frameshift mutations, but not of γ-induced frameshifts, indicating that the UV-induced pre-mutational lesions which lead to frameshift mutations may be treated in a similar way by the excision-repair system to those which lead to base-pair substitutions.  相似文献   

3.
The cytotoxic and mutagenic specificity of two therapeutically employed psoralens was examined in several Ames Salmonella typhimurium strains with near ultraviolet light (UVA, 320–400 nm) activation. Photomutagenic activity of 8-methoxypsoralen (8MOP) and 4,5′,8-trimethylpsoralen (TMP) was found to be sequence-specific, and additionally was dependent on the level of DNA-repair proficiency. Base-pair substitution photomutagenesis in hisG46 appeared to require plasmid pKM101-mediated “error-prone” repair. Frameshift photomutagenesis was observed in all hisC3076 strains but not in hisD3052 strains. Frameshift mutagenic activity in hisC3076 was enhanced in the absence of uvrB excision repair and increased further by plasmid pKM101. Phototoxicity was essentially identical in hisC3076, hisD3052 and hisG46 strains; uvrB excision-repair-deficient bacteria were considerably more susceptible to lethal effects than wild-type parental strains, while the presence of pKM101 had no apparent effect on survival. Finally, the data show that psoralens are potent frameshift photomutagens in Salmonella hisC3076 strains and demonstrate the potential utility of these strains in evaluating photomutagenic and phototoxic activity of new furocoumarin derivatives.  相似文献   

4.
Ultraviolet (UV) and gamma-induced mutagenesis have been studied using a doubly auxotrophic strain of Salmonella typhimurium carrying the amber leuA150 mutation (which reverts by base-pair substitution) and the frameshift hisC3076 marker (which reverts by compensating frameshifts). In the initially constructed LT2 background, both markers were poorly revertible by UV and essentially non-revertible by gamma-radiation. A derivative of this strain carrying the mutation-enhancing plasmid pKM101 was however readily reverted by both UV and gamma, with either Leu+ (base substitution) or His+ (frameshift) revertants being observed on appropriate selective media. Photoreactivation experiments suggested that the lesions leading to formation of the two types of mutagenic event were similar if not identical. Support for this suggestion was obtained when it was found that yields of both types of UV-induced revertant were significantly increased in an excision-deficient background, while no revertants of either type were found in a recA background. Yields of gamma-induced revertants were not greatly altered in a uvrB background, but were also reduced to zero (for both markers) in the recA background. These results are consistent with what has previously been well-documented for UV and gamma-induced base-pair substitution mutagenesis, and serve to emphasize the similarities between base-pair substitution mutagenesis and frameshift mutagenesis by these agents. There are differences, however, since although UV-induced reversion of the leuA150 marker was little affected and gamma-induced reversion of leuA150 was somewhat reduced in the presence of a polA mutation (polA3), the yields of His+ frameshift revertants were significantly increased in the polA3 background following treatment with either UV or gamma. Thus while inducible DNA repair (SOS repair) appears to be involved in generating both types of mutational event following either UV- or gamma-irradiation, at some stage in the processing of premutational lesions the level (or type) of DNA polymerase I activity in the cell seems to have an important role in determining whether or not frameshifts or base-pair substitutions will be produced at a particular frequency.  相似文献   

5.
Despite a previous report to the contrary, anaerobic cultures of Salmonella typhimurium strain LT2 hisG46 are revertible (although to a slightly reduced extent) by both N-methyl-N'-nitro-N-nitrosoguanidine and diethyl sulfate, while anaerobic cultures of a strain carrying the frameshift hisC3076 marker are fully revertible by 9-aminoacridine.  相似文献   

6.
Sodium bisulfite is a weak mutagen at pH 5 and 6 in S. typhimurium strains carrying the hisG46 and hisD6610 mutations, but is not mutagenic in strains with the hisC3076 or hisD3052 mutations. The bisulfite-induced base-pair substitution mutations were slightly enhanced by the presence of the plasmid, pKM101, but inhibited by the presence of the uvrB and rfa mutations. The hisO1242 mutation which causes constitutive expression of the histidine operon, produced a slight enhancement of frameshift (hisD6610), but not base-pair substitution (hisG46) mutations. Bisulfite-induced mutations appear to be the result of two different mechanisms which may be a function of the repair capacity of the strains. The data suggest that the deamination of cytosine may not be responsible for frameshift mutations, but may be responsible for base-pair substitution mutagenesis. Because the rate of bisulfite autooxidation appears to play a role in the mutagenic process, we are suggesting that the deamination of cytosine may be the result of oxidative damage rather than through the direct formation of a cytosine-bisulfite adduct. This is further supported by the much lower concentrations of bisulfite needed to cause mutagenicity than the 1 M concentrations cited to produce cytosine-bisulfite adducts.  相似文献   

7.
A mutant of Salmonella typhimurium LT2 deficient in methylation of the adenine residues in the sequence 5'-GATC-3' was isolated. The mutation (dam-1) was linked to the cysG locus, and the properties of the mutant were similar to those of Escherichia coli dam mutants. Reversion of the hisC3076 frameshift marker by 9-aminoacridine was substantially enhanced by the dam-1 mutation, implying a direct role for adenine methylation in the prevention of frameshift mutation induction.  相似文献   

8.
Induction of back mutations to prototrophy by methylene blue (MB)-sensitized photodynamic (PD) treatment has been studied in wild-type and repair-deficient strains of Salmonella typhimurium carrying either the base-pair substitution mutation hisG46 or the frameshift mutation hisD3052. We found that reversion of the hisG46 mutation was increased in a strain carrying a uvrB deletion and decreased in a strain carrying a recA-type mutation. Reversion of the hisD3052 (frameshift) mutation, on the other hand, was decreased in both uvrB deletion and recA-type strains. The former results are consistent with the hypothesis that the majority of MB-sensitized PD-induced base-pair substitution mutations arise by a mechanism similar to that currently believed to be involved in UV mutagenesis. The latter results suggest that PD-induced frameshift mutations may arise in some other way, and two possible mechanisms involving sequential action of the excision repair and recombinational repair pathways are considered.  相似文献   

9.
The frequency of UV-induced extragenic suppressor reversions to leucine independence in B. subtilis carrying a leu8 mutation decreased when irradiated cells were temporarily incubated in medium deprived of nitrogen sources. This mutation frequency decline (MFD) was inhibited by acriflavine and was poorly expressed in a uvr1 mutant. Consequently, MFD may be considered as the manifestation of an anti-mutagenic activity of excision repair. MFD was decelerated and even vanished in cells subjected to prolonged starvation of nitrogen sources before irradiation. MFD was accelerated in bacteria that were first irradiated and incubated in nutritional medium for at least 30 min. The stimulation of MFD by UV exposure was observed only in the uvr+ strain and depended on protein synthesis after irradiation. It is assumed that different rates of MFD in cells of various pre-radiation histories reflect different levels of the excision-repair activity inherent in these cells.  相似文献   

10.
Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4–38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.  相似文献   

11.
Defects in the methyl-directed mismatch repair lead to both the hypermutability phenotype and removal of a barrier to genetic exchange between species. Mutator bacteria carrying such defects occur frequently among bacterial pathogens, suggesting that subpopulations of mutators are contained within pathogen clones and give rise to the genetic variants that are acted upon by selective forces to allow survival or successful infection. We report here on the detection of the mutator subpopulation in Salmonella typhimurium and determination of its frequency in laboratory cultures. The analysis involved screening for mutators among revertants of S. typhimurium histidine auxotrophs selected for the His+ phenotype, since the frequency of mutators is expected to be increased in the selected mutant population they helped to spawn. The increases in spontaneous reversion of histidine mutations were first measured in isogenic strains carrying mismatch repair-defective mutH, mutL, mutS, or uvrD alleles, relative to their mismatch repair-proficient counterparts. Screening for the mutator phenotype in nearly 12,000 revertants of repair-proficient strains carrying his mutations highly stimulated for reversion in mutator backgrounds, the base substitution in hisG428 and frameshift in hisC3076, yielded five mutator strains (0.04%). the his+ reversion mutations contained within the newly-arisen mutator strains were characteristic of the predominant nucleotide changes expected in such mutators, as assessed by comparison with the spectra for reversion events in wild-type and mismatch correction-defective backgrounds. The results show that subpopulations of mutators, residing in normal populations at a finite frequency, can be culled from the culture by strong selection for a required phenotype. We calculate that the frequency of mutators in the unselected population of S. typhimurium is 1–4×10−6, an incidence of 10-fold lower than that expected based on studies of laboratory cultures of Escherichia coli.  相似文献   

12.
Spontaneous reversion of the base-pair substitution trpE8 marker in the LT2 sub-line of Salmonella typhimurium is significantly increased in the presence of the ultraviolet light-protecting and mutation-enhancing plasmid pKM101. The numbers of Trp+ revertants arising on plates of defined medium supplemented with trace amounts of nutrient broth have been found to depend upon the nature of the carbon source provided to support growth of both the background lawn and any revertants which may arise. For example, the yield of Trp+ revertants can be some 5–8 times greater when glycerol is the carbon source as compared to when glucose is the carbon source. S. typhimurium strain TA100, which carries the base-pair substitution hisG46 marker and pKM101, shows a similar response, although the difference is much smaller. Time-course experiments using both carbon sources indicate that the final trpE8 → Trp+ mutation yield is depressed by glucose rather than enhanced by a ‘mutagenic’ effect of glycerol. These results are consistent with the idea that a glucose-repressible function responsible for generating mutations can be switched on by growth on glycerol as sole carbon source. Evidence is also presented that many more mutational events occur in response to a mild temperature stress (42°) in populations growing on glycerol as carbon source than occur in populations growing on glucose.  相似文献   

13.
This paper reviews the influence of DNA repair on spontaneous and mutagen-induced mutation spectra at the base-substitution (hisG46) and -1 frameshift (hisD3052) alleles present in strains of the Salmonella (Ames) mutagenicity assay. At the frameshift allele (mostly a CGCGCGCG target), ΔuvrB influences the frequency of spontaneous hotspot mutations (−CG), duplications, and deletions, and it also shifts the sites of deletions and duplications. Cells with pKM101+ΔuvrB spontaneously produce complex frameshifts (frameshifts with an adjacent base substitution). The spontaneous frequency of 1-base insertions or concerted (templated) mutations is unaffected by DNA repair, and neither mutation is inducible by mutagens. Glu-P-1, 1-nitropyrene (1NP), and 2-acetylaminofluorene (2AAF) induce only hotspot mutations and are unaffected by pKM101, whereas benzo(a)pyrene and 4-aminobiphenyl induce only hotspot in pKM101, and hotspot plus complex in pKM101+. At the base-substitution allele (mostly a CC/GG target), the ΔuvrB allele increases spontaneous transitions in the absence of pKM101 and increases transversions in its presence. The frequency of suppressor mutations is decreased 4× by ΔuvrB, but increased 7.5× by pKM101. Both repair factors cause a shift in the proportion of mutations to the second position of the CC/GG target. With UV light and γ-rays, the ΔuvrB allele increases the proportion of transitions relative to transversions. pKM101 is required for mutagenesis by Glu-P-1 and 4-AB, and the types and positions of the substitutions are not altered by the addition of the ΔuvrB allele. Changes in DNA repair appear to cause more changes in spontaneous than in mutagen-induced mutation spectra at both alleles. There is a high correlation (r2=0.8) between a mutagen's ability to induce complex frameshifts and its relative base-substitution/frameshift mutagenic potency. A mutagen induces the same primary class of base substitution in TA100 (ΔuvrB, pKM101) as it does in Escherichia coli, mammalian cells, or rodents as well as in the p53 gene of human tumors associated with exposure to that mutagen. Thus, a mutagen induces the same primary class of base substitution in most organisms, reflecting the conserved nature of DNA replication and repair processes.  相似文献   

14.
A mutation in the recF gene of Escherichia coli results in a radiation-sensitive strain. The RecF pathway and the RecBC pathway account for nearly all of the conjugative recombination occuring in E. coli. recBC cells are radiation-sensitive and carry only out a small amount of recombination but these deficiencies are suppressed by an sbcB as recombination is shunted to the RecF pathway. A recBC sbcB recF strain is very radiation-sensitive and is devoid of recombination ability. These deficiencies are suppressed by the srfA mutation; srfA is a recA allele. UV-induced respiration shutoff is a recA+, lexA+ and recBC+ dependent. We report in this paper that respiration does not shutoff in a recF strain at 37 and 30°C. an srfA mutation suppresses this lack of respiration shutoff effect in a recF srfA mutant at 30°C but not at 37°C; no suppression by this mutation occurs at either temperature in a recF recBC sbcB strain. An srfA strain also does not shut off its respiration at 37°C and shows a temperature conditional UV-induced respiration shutoff response at 30°C. The srfA mutation is thought to cause an altered RecA protein to be produced and we suggest that at 37° This altered protein is temperature sensitive. We conclude from the results in this paper that the recF gene product is required for UV-induced respiration shutoff and that the RecA protein plays a special role in the induction process.  相似文献   

15.
The antimutagenic activity of trans-cinnamaldehyde (C6H5CH = CHCHO) on chemically induced mutagenesis has been shown in E. coli. Using the Ames Salmonella typhimurium tester strains TA1535 (hisG46 uvrB rfa) and TA100 (TA1535/pKM101), the effects of cinnamaldehyde on spontaneous reversions and reversions induced by 4-nitroquinoline-N-oxide(4NQO) and ethyl methanesulfonate (EMS) have been examined. To observe the effect of cinnamaldehyde in the absence of functional muc genes, a third strain, TA1535/pGW201 (pKM101 muc140: :Tn5) was included in the testing. Modifications of the standard Ames test procedures and direct-plating techniques were employed to study the "antimutagenic" response exerted by cinnamaldehyde. In all strains tested, concentrations of cinnamaldehyde up to 25 micrograms/ml slightly decreased the number of spontaneous reversions and induced reversions were more markedly reduced. The decreases in the numbers of 4NQO-induced revertants were greater than those decreases which occurred for EMS-induced reversions. There was no effect on viability in 1% (v/v) nutrient broth supplemented minimal medium containing 5-25 micrograms/ml of cinnamaldehyde. Cinnamaldehyde did not display any mucAB dependent or independent specificity against the mutagens used. On minimal medium supplemented with histidine and biotin, concentrations of cinnamaldehyde above 10 micrograms/ml were lethal for the strains tested. When the test medium was supplemented with 1-5% (v/v) liquid nutrient broth, viability was not affected at concentrations up to 25 micrograms/ml. For both TA100 and TA1535 the presence of 20 micrograms/ml of cinnamaldehyde in 1% (v/v) liquid nutrient broth-supplemented minimal glucose broth extended the lag phase for 2-4 h with no effect on survival. Depending on the test procedure employed, decreases in numbers of revertants may reflect lethality rather than antimutagenesis. When used to test for antimutagenesis rather than mutagenesis, modifications of the standard Ames test procedure may mimic an antimutagenic response due to a decrease in the total number of revertants seen even though enough cells survive to produce a background lawn.  相似文献   

16.
Mutation frequency decline (MFD) is an irreversible loss of newly-induced suppressor mutations occurring in excision-proficient Escherichia coli during a short period of incubation in minimal medium before plating on broth- or Casamino acids-enriched selective agar. It is known that MFD of UV-induced mutations may occur before DNA containing pre-mutagenic lesions is replicated, but we conclude that MFD can also occur after the damaged DNA has been replicated on the basis of the following evidence. (1) Mutation fixation in rich medium (i.e., loss of susceptibility to mutation frequency decline) with ethyl methanesulphonate mutagenesis begins immediately, whereas with UV it is delayed for 20--30 min. (2) The delay in mutation fixation after UV can be explained neither by inhibition of DNA replication nor by a delay in the appearance of error-prone repair activity in the irradiated population. (3) MFD at later times after UV irradiation is more rapid and is less strongly inhibited by caffeine than is MFD immediately after irradiation. (4) Excision is virtually complete 20 min after 3 J m-2 UV but at that time virtually all mutations are still susceptible to MFD. We have presented evidence elsewhere that in bacteria there is an alternative error-free excision-dependent type of post-replication repair of potentially mutagenic daughter strand gaps. We suggest that this process is inhibited at tRNA loci in the presence of nutrient broth or Casamino acids, possibly because of a broth-dependent change in the structure of the single-stranded region including the tRNA locus.  相似文献   

17.
Reversion of the Salmonella typhimurium frameshift marker hisC3076 by ICR191 and 9-aminoacridine in rec+ and recA1 backgrounds was examined using the standard plate-reversion assay. For both compounds, the level of reversion observed in the recA strain is significantly greater than in the rec+ strain. Thus reversion of hisC3076 is not recA-dependent, but is recA-modulated. The ability of a mutagen (or mutagenic treatment) to induce the recA lexA-dependent SOS response does not therefore imply that mutagenic effects will also be recA-dependent.  相似文献   

18.
Comparative studies of plasmids col I and pKM101 effect on lethal and mutagenic response to UV-light and chemical agents (4NQ0, EMS, agent N012074) has been carried out in Salmonella strains used for screening of mutagens (potential carcinogens). It has been found that the plasmid pKM101 has more pronounced effect as compared with coll plasmid. Contrary to plasmid pKM101-mediated ability to form UV-induced frameshift mutation, colI factor lacks this ability and very slightly enhances the rate of frameshift mutagenesis induced by chemical agents under study. The colicinogenic factor is found to enhance only the rate of base-pair substitutions, whereas plasmid pKM101 enhances the rate of both base-pair substitutions and frameshift mutations. We were unable to demonstrate combined effect of these two plasmids on the rate of either spontaneous or induced mutations. Possible mechanisms of plasmid-mediated bacterial mutagenesis and repair are discussed.  相似文献   

19.
Summary In a phage T7-resistant and galactose-sensitive derivative of E. coli B/r trp- it has been possible to show that MFD for UV-induced mutations is specific for Trp+ reversions (mainly of an ochre suppressor-containing type) but is without effect on galactose-resistant or D-fucose-resistant (ara Cc) forward mutations.  相似文献   

20.
We have studied the molecular nature of ade2 mutations induced by UV light and bifunctional acridine-mustard (BAM) in wild-type (RAD) and in excision-deficient (rad2) strains of the yeast, Saccharomyces cerevisiae. In the RAD strain, UV causes 45% GC → AT transitions among all mutations; in the rad2 strain this value is 77%. BAM was shown to be highly specific for frameshift mutagenesis: 60% frameshifts in the RAD strain, and as many as 84% frameshifts in the rad2 strain were induced. Therefore, the rad2 mutation affects the specificity of UV- and BAM-induced mutagenesis in yeast. Experimental data agree with the view that the majority of mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the rad2 strain are predominantly postreplicative events. Our results also suggest that: (1) cytosine-containing photoproducts are the substances responsible for major premutational damage to DNA; (2) a fraction of the mutations may arise in the course of excision repair of UV photoproducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号