首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exocellular d-glucosyltransferase from Streptococcus mutans 6715 has been highly purified with minimal loss of enzymic activity. The organisms were cultured in trypticase soy-broth that had been treated with invertase and filtered through an ultrafilter fitted with a membrane having a cut-off molecular weight at 10,000. To the growth medium was added Tween 80, which prevented the enzyme from aggregating. The final step in the purification employed insoluble, streptococcal dextran as anaffinity support. Two d-glucosyltransferase activities were detected, viz., one that did not adsorb to the insoluble dextran and one that did. The enzymic fraction that had adsorbed to the insoluble dextran in the affinity column was strongly inhibited by added insoluble dextran.  相似文献   

2.
Soluble dextransucrase activity(ies) was eluted with a solution of clinical dextran from the insoluble dextran-cell complex produced by Streptococcus mutans K1-R grown in the presence of sucrose. Studies of the dextran acceptor-reaction of the soluble enzyme-preparation indicate that it is highly specific for dextran of high molecular weight. Increased dextran synthesis in the presence of dextran acceptor and the apparent inhibition of this stimulation by higher concentrations of dextran result from product modification rather than a direct effect on the level of enzyme activity. The results demonstrate that the potentially water-insoluble structure synthesized by dextransucrase on exogenous, soluble dextran acts as a more-efficient acceptor than the soluble dextran. The role of the acceptor reaction in the biosynthesis of complex dextrans is discussed.  相似文献   

3.
Leuconostoc mesenteroides strain NRRL B-1355 produces two soluble extracellular α-D-glucans from sucrose: alternan and dextran. An unusual mutant strain derived from NRRL B-1355 has recently been isolated which produces practically no soluble polysaccharide, but significant amounts of an insoluble D-glucan. Methylation analysis shows it contains linear (1→3) and (1→6) linkages as well as (1→2) and (1→3) branch linkages. The insoluble glucan was partially digestible by endodextranase, giving rise to a series of oligosaccharides, a high-molecular weight soluble fraction and an insoluble residue. Treatment of the soluble dextranase-limit fraction with an α(1→2) debranching enzyme led to further dextranase susceptibility. Methylation, FTIR and NMR analyses of the dextranase-treated fractions indicate a non-uniform structure with domains bearing similarities to L. mesenteroides strain NRRL B-1299 dextran and to insoluble streptococcal D-glucans. Received 05 November 1998/ Accepted in revised form 31 March 1999  相似文献   

4.
Summary Peroxisomes, lysosomes, and mitochondria have been purified from rat liver by sucrose density gradient centrifugation without prior treatment of the animals with Triton WR-1339 or other detergents which cause hyperlipidemia. A crude organelle fraction was first prepared by differential centrifugation of a rat liver homogenate, this fraction contained approximately 70% of the mitochondrial, 40% of the peroxisomal, and 30% of the lysosomal marker enzymes measured in the homogenate. The crude organelle fraction was applied to the top of a sucrose density gradient and centrifuged. A clear separation of the organelles was obtained only when dextran was present in the gradients. Success or failure of the method was found to depend on the particular preparation of dextran used in the gradients. A method for subfractionating dextran was developed which yields dextran fractions that make the separations completely reproducible. Starting with a crude organelle fraction derived from 12 g of liver, approximately 85% of the mitochondrial, 70% of the peroxisomal, and 50% of the lysosomal activities were obtained as pure fractions. The organelle separation takes less than five hours to complete, it represents a substantial improvement over previous methods.  相似文献   

5.
Insoluble laminaran, a (1→3)-β-D-glucan from Laminaria hyperborea (L. cloustoni), has been fractionated by differential solubility into soluble and insoluble fractions. These fractions were degraded with a purified exo-(1→3)-β-D-glucanase from Basidiomycete sp. QM806 giving, as primary hydrolysis products, D-glucose, gentiobiose, laminarabiose, and 1-O-β-laminarabiosylmannitol. Gentiobiose was obtained in only trace amounts from the insoluble fraction of laminaran, suggesting the absence of branching. Successive application of periodate oxidation, reduction, mild acid hydrolysis, and enzymic degradation indicated that the branch in the soluble fraction consists of a single β-(1→6)-linked D-glucosyl residue. The results indicate that “insoluble” laminaran is apparently an aggregate of three closely related polysaccharide species: a soluble, branched, reducing component (soluble laminarose); an insoluble, unbranched, reducing component (insoluble laminarose); and an unbranched, nonreducing component (laminaritol) that has a monosubstituted mannitol residue at the reducing terminal. Laminaritol was found to be about equally distributed between the soluble and insoluble fractions. The average d.p. of the laminaran components is 20–25 residues, as determined from the relative amounts of enzymic hydrolysis products and from periodate-oxidation data.  相似文献   

6.
Leuconostoc mesenteroides B-1355 produced at least three glucosyltransferases (GTFs). We previously identified GTF-2 as alternansucrase and GTF-3 as fraction L dextransucrase. We here show that GTF-1 is a previously unreported sucrase that synthesized water-insoluble dextran. Our evidence consisted of the following. (i) GTF-1 was a major component and GTF-2 was a minor component of culture supernatant fractions, but supernatant fractions actively synthesized water-insoluble glucan. (ii) GTF-1 and culture supernatants produced an unusual high-pressure liquid chromatography pattern of malto-oligosaccharides that was not reproduced by GTF-2-GTF-3 mixtures. (iii) GTF-2, GTF-3, and GTF-2-GTF-3 mixtures did not synthesize insoluble glucan from sucrose. Nearly all of the alternansucrase in young (less than 17-h) cultures was associated with the cells.  相似文献   

7.
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis.  相似文献   

8.
An amount of 200 kg fresh salmon frames were enzymic hydrolysed with the commercial protease mixture Protamex™, which is known to produce non-bitter hydrolysates. After the enzymic procedure the frames were separated by centrifugation into five fractions: an aqueous fraction rich in peptides, an insoluble fraction, an emulsion fraction, salmon oil and a bone fraction. Approximately 48% of total crude protein present in the salmon frames were found in the aqueous fraction, in which the lipid content was reduced to <0.1% in dry samples after ultramembrane filtration (UF fraction). The UF fraction was low in tryptophan, leucine and phenylalanine+tyrosine, but high in taurine. Nearly 19% of total crude protein present in the salmon frames were found in the insoluble fraction. This fraction was high in most of the indispensable amino acids. Approximately 77% of total lipids present in the salmon frames were isolated as salmon oil, which was high in both eicosapentaenic acid (EPA) and docosahexaenic acid (DHA). The bone fraction contained 62% of total ash present in the salmon frames and was high in the minerals Ca, P and Mg and also in the trace elements Cu, Fe, I, Mn, Se and Zn. All of the produced fractions were low in the undesirable substances As, Cd, Hg and Pb. For future studies the UF fraction and salmon oil might be interesting as health promoting agents, the insoluble fraction as dietary protein supplement and the bone fraction as dietary mineral supplement.  相似文献   

9.
Hen oviduct chromatin was digested with DNase II and separated into two fractions. The MgCl2 insoluble chromatin fraction (43% of the total DNA) was enriched in nucleosome-like particles, which sedimented at 11 S and contained 185 base pairs of DNA. The MgCl2 soluble chromatin fraction (5% of the total DNA) was characterized by 5 S and 14 S peaks in sucrose gradients; Estrogen receptors in the chromatin fractions were labelled with [3H] estradiol using the steroid exchange assay. The concentration of receptors in the MgCl2 soluble chromatin was 4;5 times higher than that in the MgCl2 insoluble chromatinmin sucrose gradient analysis the 11 S particles displayed a negligible specific radioactivity suggesting that estrogen receptors mainly bind to extranucleosomal chromatin.  相似文献   

10.
Three types of invertase (invertase I, II and III) are separatedfrom the soluble and insoluble fractions (4,500xg, 10 min supernatantand pellets of the homogenate, respectively) of baker's yeastby a DEAE cellulose column chromatography. The invertases Iand II are eluted with 0.1 M sodium acetate buffer (pH 3.9)and with 0.1 M sodium acetate buffer (pH 6.2) containing 0.1M NaCl from DEAE cellulose respectively, whereas the invertase-IIIremains adsorbed on the cellulose under these conditions. Theyare present in proportions of 2.5: 1 : 0.06 in the soluble fractionand 1.4: 1 : 0.12 in the insoluble fraction of the fresh baker'syeast cells. While in-vertase-II remains at a constant level,invertases I and III in the soluble fraction increase upon incubationof cells for the formation of invertase under the continuoussupply of sucrose. Invertases I and II differ from each other considerably in theoptimum pH and slightly in the response to (activation and inactivationby) crude papain and are identical with respect to the heatstability and probably to the affinity for sucrose. 1Present address: Chemical Laboratory, Nippon Medical School,Konodai, Ichikawa-shi, Chiba-ken.  相似文献   

11.
Human placental microvilli were isolated and separated into two fractions by centrifugation in sucrose density gradients. Electron-microscopic morphology and morphometry, the distribution of enzymic activities and the results of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of proteins were used to assess the purity of the final preparations and to define their properties. The combined evidence strongly suggested that the preparations contained negligible material that was not plasma membrane. The two fractions of microvilli differed in buoyant density, protein composition, enzyme specific activities and microscopic appearance. Some of these differences were explained by the absence of internal structure in the microvilli of the lighter fraction.  相似文献   

12.
Single cells were effectively released from 35–45-day-old soybean ( Glycine max L. cv. Yaefusanari) nodules by treatment with an enzymic solution containing 1 mg/ml maceration enzyme (Pectolyase Y-23), 0.5 M mannitol, 2% (w/v) sucrose and 0.5% (w/v) potassium dextran sulfate. Bacteroid-containing cells were purified by Percoll density gradient centrifugation. Electron microscopic observation showed that these cells were protoplasts enclosed by a thin wall and with well preserved internal structures including bacteroids. The single cells obtained were stable against centrifugation and vigorous pipetting. The cells retained the ability to synthesize proteins including leghaemoglobin. The ratio of leghaemoglobin components synthesized in the single cells was similar to that of components synthesized in the nodules. The bacteroidal cell fraction was further separated into three fractions by a Percoll density gradient centrifugation. Comparison of the absolute and relative leghaemoglobin content, the activity of glutamine synthetase in the cytoplasm and the activity of 3-hydroxybutyrate dehydrogenase in the bacteroid suggests that these fractions contained cells in different stages of symbiosis. This new single cell system should provide a useful experimental system for analyzing events in the root nodule.  相似文献   

13.
G. A. Codd  W. D. P. Stewart 《Planta》1976,130(3):323-326
Summary The ribulose 1,5-diphosphate carboxylase (RUDP Case E.C. 4.1.1.39) activity of late log phase Anabaena cylindrica Lemm. was measured in vitro in fractions obtained by sucrose density gradient centrifugation. Two peaks of enzymic activity were obtained. One, accounting for about 80% of the total measurable activity occurred at the top of the gradient and appeared to be soluble activity; the second showed maximum activity in the 55% (w/w) sucrose fraction and represented 20% of the total activity. When the distribution of RUDP Case was assayed by immunoprecipitation using antiserum to RUDP Case from Euglena gracilis, the corresponding values were 59% and 41%. Electron microscopy of the various fractions showed that polyhedral bodies, which are sites of RUDP Case activity in other autotrophic prokaryotes, were also most abundant in the 55% (w/w) sucrose fraction.  相似文献   

14.
The proteins from plasma membranes from sugar beet leaves were solubilized by 1% CHAPS and separated by size exclusion chromatography and by ion-exchange chromatography. The fractions enriched in sucrose transporter were monitored in three ways: differential labeling, ELISA, and reconstitution in proteoliposomes. When the plasma membranes were differentially labeled by N-ethylamaleimide in the presence of sucrose, a major peak of differential labeling was found at 120 kDa upon gel filtration. When this peak was recovered, denaturated by sodium dodecyl sulfate and reinjected on the gel filtration column, it yielded a peak of differential labeling at 42 kDa. When unlabeled membranes were used, the fractions eluted from the column were monitored by ELISA for their ability to recognize a serum directed against a 42 kDa previously identified as a putative sucrose carrier. The results paralleled those obtained by differential labeling, i.e. a major ELISA-reactive peak was found at 120 kDa upon gel filtration, and this peak yielded a peak most reactive at 40 kDa after denaturation. The 120 kDa peak prepared from unlabeled membranes was further separated on a Mono-Q column. The fractions were monitored by ELISA as described above, and reconstituted into proteoliposomes using asolectin. Active transport of sucrose, but not of valine could be observed with the reconstituted 120 kDa fraction. When the eluates from the Mono-Q column were reconstituted, the fractions exhibiting highest transport activity were enriched with a 42 kDa band. The data provide the first report concerning reconstitution of sucrose transport activity and confirm the involvement of a 42 kDa polypeptide in sucrose transport.  相似文献   

15.
Streptococcus mutans Ingbritt (serotype c) was shown to have a significant amount of cell-associated glucosyltransferase activity which synthesizes water-insoluble glucan from sucrose. The enzyme was extracted from the washed cells with SDS, renatured with Triton X-100, adsorbed to 1,3-alpha-D-glucan gel, and then eluted with SDS. The enzyme preparation was electrophoretically homogeneous, and the specific activity was 7.3 i.u. (mg protein)-1. The enzyme had an Mr of 158,000 as determined by SDS-PAGE, and was a strongly hydrophilic protein, as judged by its amino acid composition. The enzyme gradually aggregated in the absence of SDS. The enzyme had an optimum pH of 6.5 and a Km value of 16.3 mm for sucrose. Activity was stimulated 1.7-fold by dextran T10, but was not stimulated by high concentrations of ammonium sulphate. Below a sodium phosphate buffer concentration of 50 mm, activity was reduced by 75%. This enzyme synthesized an insoluble D-glucan consisting of 76 mol% 1,3-alpha-linked glucose and 24 mol% 1,6-alpha-linked glucose.  相似文献   

16.
Homogenates of baby-hamster kidney cells and rat embryo fibroblasts prepared by nitrogen cavitation contain a small population of slowly sedimenting mitochondria or mitochondrial fragments, which contaminate the microsomal fraction. This appears to limit the resolution of surface membrane and endoplasmic reticulum on magnesium-containing dextran gradients. The microsomal material and mitochondria can, however, be completely separated on a 10-60% (w/w) sucrose zonal gradient containing a 30% sucrose plateau. On magnesium-containing dextran gradients this mitochondria-free microsomal material can be resolved into at least two surface membrane fractions and at least two endoplasmic reticulum fractions. Comparison of polyoma virus-transformed and normal baby-hamster kidney cells reveals some interesting differences in their microsomal fractionation patterns and the characteristics of the Na(+)/K(+)-Mg(2+) adenosine triphosphatase of their surface membranes, in particular a tenfold lower K(m) in the virus-transformed cells. The fractionation patterns of normal and spontaneously transformed rat embryo fibroblasts are also briefly discussed, particularly in relation to the significance of the observation that both the surface membrane and endoplasmic reticulum from these cells can be subfractionated.  相似文献   

17.
The intracellular site of synthesis of the fucose-rich polysaccharide slime secreted by corn roots was localized by monitoring the distribution of GDP-fucose:polysaccharide fucosyl transferase activity in subcellular fractions of corn roots. Root tip sections were chopped in the presence of 0.56 molar sucrose and 100 millimolar Tris (pH 7.0). After a brief centrifugation, the homogenate was applied to a Sepharose 4B column (1.5 × 30 cm). The turbid, particulate portion of the supernatant fraction eluted at the void volume. Ninety per cent of the enzyme activity was found in the pooled particulate fractions. The particulate fraction was purified on linear sucrose gradients. Gradient fractions were characterized by buoyant density, 280 nanometer absorbance, electron microscope observation, and distributions of NADH-cytochrome c oxidoreductase and fucosyl transferase activities.  相似文献   

18.
1. Homogenates of the mucosa of the small intestine of the guinea pig were separated by fractional sedimentation into seven different fractions. The enzymic properties of some of these subcellular fractions were compared with those obtained from the mucosa of the small intestine of the rabbit and cat. 2. The enzymic properties of the low-speed sediment (15000g-min.) were investigated and it was shown that invertase and alkaline ribonuclease were predominantly located in this subcellular fraction, whereas alkaline phosphatase, aryl-amidase, acid phosphatase, acid ribonuclease and phosphoprotein phosphatase, though true constituents of this fraction, occurred to varying degrees in other subcellular structures also. 3. It was shown that the most probable source of the enzymic activities observed in the low-speed sediment was the brush border. Electron micrographs of the purified brush-border fraction indicated vesicles derived from the brush-border membrane. 4. A method is described for the fractionation of mucosal homogenates into a brush border-plus-nuclei fraction, a mitochondrial fraction, a microsomal fraction and a particle-free supernatant. The fractions were shown to be relatively pure, as indicated by the distribution of invertase, DNA, succinate dehydrogenase, glucose 6-phosphatase and 6-phosphogluconate dehydrogenase. 5. Most of the activity of four lysosomal enzymes present in the nuclei-free homogenate was sedimented at 375000g-min., suggesting the occurrence of lysosomal particles in mucosal homogenates. 6. Further fractionation of the microsomal membranes into three fractions is described. The enzymic composition of the membrane fractions is given and discussed in relation to their structure as seen in electron micrographs.  相似文献   

19.
Membrane fractions were isolated from dark grown cotyledons of Phaseolus auneus by differential and sucrose density gradient centrifugation. Endoplasmic reticulum-, Golgi apparatus- and plasma membrane-rich fractions were identified by their respective enzymic activities and tested for their ability to transfer glucose from UDP-glucose to endogenous sterols to form steryl glucosides. The glucosyltransferase activity was shown to be located mainly at the plasma membrane.ABBREVIATIONS SG steryl glucoside - ASG acylated steryl glucoside - UDP-glc Uridine diphosphoglucose  相似文献   

20.
Abstract

A procedure for purification of the bungarotoxin-binding fraction of sarcolemma from rabbit skeletal muscle is described. Muscle is homogenized in 0.25M sucrose without high salt extraction and membrane fractions separated initially by differential centrifugation procedures. An ultracentrifugation pellet enriched in cell surface and sarcoplasmic reticulum markers is further fractionated on a dextran gradient (density = 1.0 to 1.09). Two fractions are identified as sarcolemma according to high specific activities for lactoperoxidaseiodination, Na+, K+-ATPase and α-bungarotoxin-binding. No Ca++, Mg++-ATPase activity is found in these fractions. A third fraction, the dextran gradient pellet, is enriched in Ca++, Mg++-ATPase activity and lactoperoxidase iodinatable material and characterized by low bungarotoxin binding. This fraction represents a mixture of sarcoplasmic reticulum and transverse tubules with some sarcolemma contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号