首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of protein kinase C (PKC) in epidermal growth factor (EGF)-induced human keratinocyte migration was studied with the phagokinetic assay. It was concluded that PKC activation does not mediate, but rather inhibits, EGF-induced keratinocyte migration. The following experimental observations support these conclusions: 1) The PKC inhibitor H-7 did not inhibit EGF-induced migration but instead led to a modest enhancement. 2) PKC activators such as phorbol-12-myristate-13-acetate (PMA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoly-sn-glycerol inhibited migration, but biologically inactive 4α-PMA had no effect. 3) PMA did not inhibit keratinocyte attachment and spreading but blocked migration almost immediately after addition. 4) Migration of PKC-depleted cells, which were produced by prolonged treatment with PDBu, was enhanced similarly to normal cells by EGF. 5) PKC-depleted cells were not susceptible to the inhibitory effects of phorbol esters on migration. Additional experiments, in which cells were preactivated with EGF, suggested that PKC inhibits the EGF effect at a post-receptor level. The inhibitory effect of PKC on keratinocyte migration was not restricted to EGF-induced migration; PKC activation also inhibited keratinocyte migration induced by bovine pituitary extract, insulin, insulin-like growth factor-1, and keratinocyte growth factor. © 1993 Wiley-Liss, Inc.  相似文献   

2.
The effect of EGF on (14)C-alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its related signaling pathways were examined in primary cultured rabbit renal proximal tubule cells (PTCs). Epidermal growth factor (EGF) (50 ng/ml) was found to inhibit alpha-MG uptake, a distinctive proximal tubule marker. The EGF effect was blocked by AG1478 (an EGF receptor antagonist) or genistein and herbimycin (tyrosine kinase inhibitors), respectively. In addition, the EGF-induced inhibition of alpha-MG uptake was blocked by neomycin and U73122 (phospholipase C inhibitors) as well as staurosporine, H-7, and bisindolylmaleimide I (protein kinase C inhibitors). EGF was also observed to increase inositol phosphate formation. Furthermore, both the EGF-induced inhibition of alpha-MG uptake and increase of arachidonic acid (AA) release were blocked by AACOCF(3) (a cytosolic phospholipase A(2) inhibitor), indomethacin (a cyclooxygenase inhibitor), and econazole (a cytochrome P-450 epoxygenase inhibitor). We examined the involvement of mitogen-activated protein kinases (MAPKs) in mediating the effect of EGF on alpha-MG uptake. Indeed, EGF increased phosphorylation of p44/p42 MAPK and the EGF-induced inhibition of alpha-MG uptake as well as the stimulatory effect of EGF on AA release was blocked by PD 98059 (a p44/42 MAPK inhibitor), suggesting a causal relationship. However, inhibitors of PKC also prevented the EGF-induced increase of AA release. In conclusion, EGF partially inhibited alpha-MG uptake via PLC/PKC, p44/42 MAPK, and PLA(2) signaling pathways.  相似文献   

3.
Focal adhesion kinase (FAK) plays a key role in the crosstalk of growth factor- and cell adhesion-mediated signaling pathway. In this study, we found that the quantitative change of phosphorylated FAK was bell-shaped time-dependently by EGF stimulation in immortalized human keratinocyte (HaCaT). EGF enhanced FAK phosphorylation and cell spreading in adhering HaCaT cells with low-phosphorylated FAK. On the other hand, spread HaCaT cells having high-phosphorylated FAK changed to round shapes with FAK dephosphorylation 15 min after EGF stimulation. Pharmacological agents, U0126 and PD98059 (mitogen-activated protein kinases (MAPK) kinases (MEK) inhibitors), and AG1478 (an EGF receptor kinase inhibitor) blocked the cell rounding and FAK dephosphorylation. In addition, the EGFR-MAPK signaling pathway had an influence on cell migration by regulating FAK dephosphorylation of keratinocytes in response of EGF, since the MEK inhibitors and AG1478 suppressed EGF-induced cell migration. However, FAK phosphorylation and HaCaT cell spreading were inhibited only by the antagonist of EGF-EGFR binding but not by the MEK inhibitors and AG1478. Taken together, we suggest that EGF is antagonistically involved in both FAK phosphorylation and dephosphorylation with different mechanisms in a cell.  相似文献   

4.
Recently, we have demonstrated that certain neurotrophic factors can induce oxidative neuronal necrosis by acting at the cognate tyrosine kinase-linked receptors. Epidermal growth factor (EGF) has neurotrophic effects via the tyrosine kinase-linked EGF receptor (EGFR), but its neurotoxic potential has not been studied. Here, we examined this possibility in mouse cortical culture. Exposure of cortical cultures to 1-100 ng/ml EGF induced gradually developing neuronal death, which was complete in 48-72 h; no injury to astrocytes was noted. Electron microscopic findings of EGF-induced neuronal death were consistent with necrosis; severe mitochondrial swelling and disruption of cytoplasmic membrane occurred, whereas nuclei appeared relatively intact. The EGF-induced neuronal death was accompanied by increased free radical generation and blocked by the anti-oxidant Trolox. Suggesting mediation by the EGFR, an EGFR tyrosine kinase-specific inhibitor, C56, attenuated EGF-induced neuronal death. In addition, inhibitors of extracellular signal-regulated protein kinase 1/2 (Erk-1/2) (PD98056), protein kinase A (H89), and protein kinase C (GF109203X) blocked EGF-induced neuronal death. A p38 mitogen-activated protein kinase inhibitor (SB203580) or glutamate antagonists (MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione) showed no protective effect. The present results suggest that prolonged activation of the EGFR may trigger oxidative neuronal injury in central neurons.  相似文献   

5.
It has been reported that epidermal growth factor (EGF) and EGF receptor were highly expressed in embryo, suggesting that the EGF system is related to early embryo development in an autocrine and/or paracrine manner. Glucose becomes the preimplantation exogenous energy substrate and enters the blastocyst via glucose transporters. Thus, the effect of EGF on [3H]-2-deoxyglucose (2-DG) uptake and its related signaling pathways were examined in mouse embryonic stem (ES) cells. EGF significantly increased 2-DG uptake in time- and concentration- dependent manner (>12 hr, >10 ng/ ml) and increased mRNA and protein level of glucose transporter 1 (GLUT1) compared to control, respectively. Actinomycin D and cycloheximide completely blocked the effect of EGF on 2-DG uptake. EGF-induced increase of 2-DG uptake was blocked by AG1478 (EGF receptor tyrosine kinase blocker), genistein or herbimycin (tyrosine kinase inhibitors). In addition, EGF effect was blocked by neomycin and U 73122 [phospholipase C (PLC) inhibitors] as well as staurosporine and bisindolylmaleimide I [protein kinase C (PKC) inhibitors]. EGF was also observed to increase inositol phosphates (IPs) formation and activate a PKC translocation from the cytosolic to membrane fraction, suggesting a role of PLC and PKC. SB 203580 [p38 mitogen activated protein kinase (MAPK) inhibitor] or PD 98059 (p44/42 MAPKs inhibitor) blocked EGF-induced increase of 2-DG uptake. EGF also increased phosphorylation of p38 MAPK and p44/42 MAPKs, which was blocked by genistein or bisindolylmaleimide I, respectively. In conclusion, EGF partially increased 2-DG uptake via PKC, p38 MAPK, and p44/42 MAPKs in mouse ES cells.  相似文献   

6.
p21-activated kinases (PAKs) were the first identified mammalian members of a growing family of Ste20-like serine–threonine protein kinases. In this study, we show that PAK1 can be stimulated by carbachol, lysophosphatidic acid (LPA), epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) by multiple independent and overlapping pathways. Dominant-negative Ras, Rac, and Cdc42 inhibited PAK1 activation by all of these agonists, while active Rac1 and Cdc42 were sufficient to maximally activate PAK1 in the absence of any treatment. Active Ras induced only a weak activation of PAK1 that could be potentiated by muscarinic receptor stimulation. Studies using inhibitors of the EGF receptor tyrosine kinase, phosphatidylinositol 3-kinase (PI3-kinase) and protein kinase C (PKC) revealed that all of the cell surface agonists could activate PAK1 through pathways independent of PKC, that EGF stimulated a PI3-kinase dependent pathway to stimulate PAK1, and that muscarinic receptor stimulation of PAK1 was predominantly mediated through this EGF-R-dependent mechanism. Activation of PAK1 by LPA was independent of PI3-kinase and the EGF receptor, but was inhibited by dominant-negative RhoA. These results identify multiple Ras-dependent pathways to activation of PAK1.  相似文献   

7.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   

8.
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮(genistein)在抑制TPK和PKC的同时,抑制GnT-V的基础活力,并完全阻断EGF或PMA对GnT-V的增高作用;TPK的特异性抑制剂Tyrphostin-25和PKC的特异性抑制剂D-鞘氨醇分别应用时,各自只能部分地取消EGF或PMA对GnT-V的诱导。但当Tyrphostin-25和D-鞘氨醇同时加入培养基中则可完全阻断EGF或PMA对GnT-V的诱导激活。蛋白质合成抑制剂环己亚胺和蛋白激酶抑制剂作用相仿,不但可抑制GnT-V的基础活力,也可完全消除EGF或PMA对GnT-V的激活。以上结果提示EGF或PMA通过蛋白激酶调节GnT-V的酶蛋白合成,并且GnT-V受到膜性TPK和PKC的双重调节,其中m-TPK较m-PKC更为重要。  相似文献   

9.
The reported studies on the metabolism in chicken hepatocytes in comparison with those of mammals are quite different. Therefore, this study examined the effect of EGF on DNA synthesis along with its related signal cascades in primary cultured chicken hepatocytes. EGF stimulated DNA synthesis in a dose (> or =10 ng/ml)-dependent manner, which correlated with the increase in CDK-2 and CDK-4 expression. The EGF-induced increase in [3H]-thymidine incorporation was blocked by AG 1478 (an EGF receptor tyrosine kinase antagonist), genistein, and herbimycin A (tyrosine kinase inhibitors), suggesting a role in the activation and tyrosine phosphorylation of the EGF receptor. In addition, the EGF-induced stimulation of [3H]-thymidine incorporation was prevented by staurosporine, H-7, or bisindolylmaleimide I (protein kinase C inhibitors), suggesting a role of PKC. In addition, PD 98059 (a MEK inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor) blocked the EGF-induced stimulation of [3H]-thymidine incorporation and CDK-2/4 expression. Indeed, EGF increased the translocation of PKC from the cytosol to the membrane fraction, and increased the activation of p44/42 MAPK, p38 MAPK, and JNK. Moreover, EGF increased the CDK-2, CDK-4, cyclin D1, and cyclin E expression levels but decreased the p21 and p27 expression levels. These EGF-induced increases were blocked by an EGF receptor antagonist, tyrosine kinase inhibitors, PKC inhibitors, and MAPKs inhibitors. In conclusion, EGF stimulates DNA synthesis of primary cultured chicken hepatocytes via Ca2+/PKC and the MAPKs signaling pathways.  相似文献   

10.
Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, differentiation, and activation of myeloid cells. It binds to a high affinity receptor (G-CSF-R) expressed on myeloid cells, for which the signal transduction mechanisms other than protein tyrosine kinase (PTK) activation have not been completely identified. We explored the potential involvement of protein kinase-C (PKC) in G-CSF-R signal transduction. In this report, we provide direct evidence of PKC activation by G-CSF-R. G-CSF treatment of peripheral blood neutrophils, granulocytic cell lines (HL-60, NFS-60, KG-1), and monocytic cell lines (WEHI-3B,U-937) resulted in PKC activation. Chelerythrine chloride and HA-100, an isoquinolinesulfonamide derivative, the specific inhibitors of PKC, 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA), a chelator of intracellular calcium, and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester (TMB-8), an inhibitor of intracellular calcium release, blocked G-CSF-induced PKC activation in HL-60 cells, and reduced CD11b upregulation in neutrophils, but did not affect ligand-binding or down-modulation of G-CSF-R. Methyl 2,5-dihydroxycinnamate (MDHC), a potent inhibitor of protein tyrosine kinases (PTK), also inhibited PKC activation in response to G-CSF treatment, suggesting that PKC activation may occur downstream of PTK activation. Our results demonstrate the involvement of PKC in G-CSF-R signal transduction, and suggest a common signaling pathway in myeloid cells of granulocytic and monocytic lineages. J. Cell. Biochem. 66:286–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Basic fibroblast growth factor (bFGF) is a well-characterized peptide hormone that has mitogenic activity for various cell types and elicits a characteristic set of responses on the cell types investigated. In this report we confirmed that bFGF is a potent mitogen for rat brain-derived oligodendrocyte (OL) precursor cells as well as for differentiated OL in secondary culture. bFGF was shown to induce expression of the protooncogene c-fos in OL. The role of protein kinase C (PKC) in mediating bFGF-stimulated proliferation as well as c-fos expression in OL was investigated. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated c-fos expression but did not trigger cell proliferation. When PKC was down-regulated by pretreatment of OL with PMA for 20 h, the bFGF-mediated stimulations of OL proliferation and c-fos mRNA expression were still observed, whereas the induction of c-fos mRNA by PMA was totally inhibited. These data demonstrate that the bFGF mitogenic signaling pathway in OLs does not require PKC. On the other hand, bFGF was found to stimulate specifically the phosphorylation of a limited number of PKC substrates in oligodendroglial cells, including the MARCKS protein. The bFGF-dependent phosphorylation of MARCKS protein was totally inhibited when PKC was first down-regulated, indicating that the phosphorylation of this protein is PKC dependent. Tryptic digestion of the phosphorylated MARCKS protein revealed that bFGF stimulated specifically the phosphorylation of the MARCKS protein on a single phosphopeptide. We provide evidence that bFGF also stimulated fatty acylation of the MARCKS protein, which might explain the observed specific bFGF-dependent phosphorylation of this protein in OL. We propose that bFGF-dependent fatty acylation and phosphorylation of the MARCKS protein are not essential for the transduction of the bFGF mitogenic signal but are probably linked to differentiation processes elicited by bFGF on OL.  相似文献   

12.
Abstract: Nerve growth factor (NGF) increases arachidonic acid (AA) release by PC12 pheochromocytoma cells. To explore the role of protein kinase C (PKC) in this action of NGF, PKC was down-regulated by long-term treatment of the cells with phorbol 12-myristate 13-acetate (PMA). Such prolonged exposure to PMA (1 µ M ) resulted in the inhibition of NGF-induced AA release. Moreover, pretreatment of PC12 cells with the protein kinase inhibitor staurosporine or with calphostin C, a specific inhibitor of PKC, also blocks the increase of AA release induced by NGF. These data, as well as that PMA alone can induce AA release in PC12 cells, suggest that PKC is necessary for NGF-induced AA release. Immunoblot analysis of whole cell lysates by using antibodies against various PKC isoforms revealed that our PC12 cells contained PKCs α, δ, ε, and ζ. PMA down-regulation depleted PKCs α, δ, and ε, and partially depleted ζ. To see which isoform was involved in NGF-induced AA release, an isoform-specific PKC inhibitor was used. GO 6976, a compound that inhibits PKCs α and β specifically, blocked NGF-induced AA release. In addition, thymeleatoxin, a specific activator of PKCs α, β, and γ, induced AA release from PC12 cells in amounts comparable with those seen with NGF. Taken together, these data suggest that PKC α plays a role in NGF-induced AA release.  相似文献   

13.
14.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

15.
In rat pheochromocytoma cell line (PC12) cells, initial epidermal growth factor (EGF)-stimulated extracellular signal-regulated protein kinases 1/2 (ERK1/2) phosphorylation was similar to that promoted by nerve growth factor (NGF), but declined rapidly. Pre-treatment with apigenin or LY294002 sustained EGF-stimulated ERK1/2 phosphorylation whereas wortmannin partially blocked initial ERK1/2 phosphorylation. Changes in ERK1/2 phosphorylation correlated with alterations in p90 ribosomal S6 kinase activity. Wortmannin, LY294002 and apigenin totally blocked growth factor-induced protein kinase B phosphorylation. However, none of them potentiated Raf activation, which was in fact decreased by LY290042 and wortmannin. The sustained EGF-induced ERK1/2 activation promoted by apigenin was not sufficient to commit PC12 cells to differentiate, which was achieved by stimulation with NGF, either alone or in the presence of apigenin.  相似文献   

16.
We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.  相似文献   

17.
Tea polyphenols are known to inhibit a wide variety of enzymatic activities associated with cell proliferation and tumor progression. The molecular mechanisms of antiproliferation are remained to be elucidated. In this study, we investigated the effects of the major tea polyphenol (−)-epigallocatechin gallate (EGCG) on the proliferation of human epidermoid carcinoma cell line, A431. Using a [3H]thymidine incorporation assay, EGCG could significantly inhibit the DNA synthesis of A431 cells. In vitro assay, EGCG strongly inhibited the protein tyrosine kinase (PTK) activities of EGF-R, PDGF-R, and FGF-R, and exhibited an IC50 value of 0.5–1 μg/ml. But EGCG scarcely inhibited the protein kinase activities of pp60v-src, PKC, and PKA (IC50 > 10 μg/ml). In an in vivo assay, EGCG could reduce the autophosphorylation level of EGF-R by EGF. Phosphoamino acid analysis of the EGF-R revealed that EGCG inhibited the EGF-stimulated increase in phosphotyrosine level in A431 cells. In addition, we showed that EGCG blocked EGF binding to its receptor. The results of further studies suggested that the inhibition of proliferation and suppression of the EGF signaling by EGCG might mainly mediate dose-dependent blocking of ligand binding to its receptor, and subsequently through inhibition of EGF-R kinase activity. J. Cell. Biochem. 67:55–65, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
19.
目的:观察穿心莲内酯(Andrographolide,AD)对人非小细胞肺癌细胞系H3255细胞的生长抑制作用,并研究其对肿瘤生长相关标记物血管内皮生长因子(vascular endothelial growth factor,VEGF)、转化生长因子(transforming growth factor,TGF)β1的表达以及蛋白激酶C(protein kinase C,PKC)的活性有无影响。方法:体外培养H3255细胞,分别用1.0、2.5、5.0μmol/L的AD在处理细胞24h。MTT法检测细胞的增殖,比色法检测乳酸脱氢酶(lactate dehydrogenase,LDH)的释放情况。ELISA检测DNA片段化情况以及VEGF和TGF-β1的产生;无机磷法检测Na+-K+-ATP酶活性以及磷基转移法测得PKC活性。结果:AD处理能呈剂量依赖性方式降低H3255细胞的活性以及Na+-K+-ATP酶活性(P<0.05),同时也能促进LDH的释放和DNA片段的形成,并减少肺癌细胞VEGF和TGFβ1的水平和PKC的磷酸化。结论:AD对肺癌细胞具有一定的抑制作用,有望成为一种潜在的肿瘤治疗药物。  相似文献   

20.
EGF is a regulator of a wide variety of processes in various cell systems. Hepatocytes are important sites in the body's metabolism and function. Glucose transporter 2 (GLUT2) is a major transporter that is expressed strongly in hepatocytes. Therefore, this study examined the effect of EGF on GLUT2 and its related signal cascades in primary cultured chicken hepatocytes. EGF decreased [(3)H]deoxyglucose uptake in a dose- and time-dependent manner (>10 ng/ml, 2 h). AG-1478 (an EGF receptor antagonist) and genistein and herbimycin A (tyrosine kinase inhibitors) blocked the EGF-induced decrease in [(3)H]deoxyglucose uptake, which correlated with the GLUT2 expression level. In addition, the EGF-induced decrease in GLUT2 protein expression was inhibited by staurosporine, H-7, or bisindolylmaleimide I (PKC inhibitors), PD-98059 (a MEK inhibitor), SB-203580 (a p38 MAPK inhibitor), and SP-600125 (a JNK inhibitor), suggesting a role of both PKC and MAPKs (p44/42 MAPK, p38 MAPK, and JNK). In particular, EGF increased the translocation of PKC isoforms (PKC-alpha, -beta(1), -gamma, -delta, and -zeta) from the cytosol to the membrane fraction and increased the activation of p44/42 MAPK, p38 MAPK, and JNK. Moreover, PKC inhibitors blocked the EGF-induced phosphorylation of three MAPKs. In conclusion, EGF decreases the GLUT2 expression level via the PKC-MAPK signal cascade in chicken hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号