首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between shoot growth and [3H]gibberellin A20 (GA20) metabolism was investigated in the GA-deficient genotype of peas, na Le. [17-13C, 3H2]gibberellin A20 was applied to the shoot apex and its metabolic fate examined by gas chromatographic-mass spectrometric analysis of extracts of the shoot and root tissues. As reported before, [13C, 3H2]GA1, [13C, 3H2]GA8 and [13C, 3H2]GA29 constituted the major metabolites of [13C, 3H2]GA20 present in the shoot. None of these GAs showed any dilution by endogenous 12C-material. [13C, 3H2]GA29-catabolite was also a prominent metabolite in the shoot tissue but showed pronounced isotope dilution probably due to carry-over of endogenous [12C]GA29-catabolite from the mature seed. In marked contrast to the shoot tissue, the two major metabolites present in the roots were identified as [13C, 3H2]GA8-catabolite and [13C, 3H2]GA29-catabolite. Both of these compounds showed strong dilution by endogenous 12C-material. Only low levels of [13C, 3H2]GA1, [13C, 3H2]GA8, [13C, 3H2]GA20 and [13C, 3H2]GA29 accumulated in the roots. It is suggested that compartmentation of GA-catabolism may occur in the root tissue in an analogous manner to that shown in the testa of developing seeds. Changes in the levels of [1,3-3H2]GA20 metabolites over 10 d following application of the substrate to the shoot apex of genotype na Le confirmed the accumulation of [3H]GA-catabolites in the root tissues. No evidence was obtained for catabolic loss of [3H]GA20 by complete oxidation or conversion to a methanol-inextractable form. The results indicate that the root system may play an important role in the regulation of biologically active GA levels in the developing shoot of Na genotypes of peas.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

2.
The potential for gibberellins (GAs) to control stem elongation and itsplasticity (range of phenotypic expression) was investigated inStellaria longipes grown in long warm days. Gibberellinmetabolism and sensitivity was compared between a slow-growing alpine dwarfwithlow stem elongation plasticity and a rapidly elongating, highly plastic prairieecotype. Both ecotypes elongated in response to exogenous GA1,GA4 or GA9, but surprisingly, the alpine dwarf wasrelatively unresponsive to GA3. Endogenous GA1,GA3, GA4, GA5, GA8, GA9and GA20 were identified and quantified in stem tissue harvested atcommencement, middle and end of the period of most rapid elongation. Theconcentration of GAs which might be expected to promote shoot elongation washigher during rapid elongation than toward its end for both ecotypes. Whilethere was a trend for certain GAs (GA3, GA4,GA9, GA20) to be higher in stems of the alpine ecotypeduring rapid elongation, that result does not explain the slower growth of thealpine ecotype and the faster growth of the prairie ecotype under a range ofconditions. To determine if the two ecotypes metabolized GA20differently, plants were fed [2H]- or[3H]-GA20. The metabolic products identified included[2H2]-GA1, -GA8, -GA29,-GA60, -3-epi-GA1, GA118(-1-epi-GA60) and -GA77. The concentration of[2H2]-GA1 also did not differ between the twoecotypes and metabolism of [2H2]- or[3H]-GA20 was also similar. In the same experiments thepresence of epi-GA1, GA29, GA60,GA118 and GA77 was indicated, suggesting that these GAsmay also occur naturally in S. longipes, in addition tothose described above. Collectively, these results suggest that while stemelongation within ecotypes is likely regulated by GAs, differences in GAcontent, sensitivity to GAs (GA3 excepted), or GA metabolism areunlikely to be the controlling factor in determining the differences seen ingrowth rate between the two ecotypes under the controlled environmentconditionsof this study. Nevertheless, further study is warranted especially underconditions where environmental factors may favour a GA:ethylene interaction.  相似文献   

3.
The effect of photoperiod on metabolism of 16,17-[3H2]GA19, and 1.2-[3H2]GA1 applied to intact seedlings of Salix pentandra, was investigated. No difference was found in conversion of 16,17-[3H2]GA19 to 16,17-[3H2]GA20, and 16,17-[3H2]GA1, or in metabolism of 1,2-[3H2]GA1 to [3H]GA8 between plants grown in continuous light and plants exposed for 14 days to a 12-h photoperiod. Also, leaf discs from plants grown in long or short days, converted 16,17-[3H2]GA19 both in light and darkness. These data on metabolism of 16,17-[3H2]GA19, contrast with previous results, which have indicated a photoperiodic control of the metabolism of GA19 to GA20 in S. pentandra. Presence of these applied labelled GAs and their metabolites in different parts of seedlings was recorded, after application to intact seedlings as well as to isolated plant parts. When 16,17-[3H2]GA19 was applied through the roots of intact plants, the relative amounts of 16,17-[3H2]GA1 present in leaves and shoot apices were higher than in roots and stems. In corresponding experiments with 1,2-[3H2]GA1, relatively higher amounts of [3H2]GA8 were found in roots and stems than in leaves and shoot apices. Twenty-four hours after application of 16,17-[3H2]GA19 to isolated plant parts, 16,17-[3H2]GA20 and 16,17-[3H2]GA1 were found in leaves and roots, but not in internodes. Incubation of isolated plant parts with 1,2-[3H2]GA1 for 24 h resulted in presence of [3H]GA8 in all parts. The results mentioned above were obtained by monitoring metabolites by HPLC with on-line radio counting. The conversions of 17-[2H2]GA19 to 17-[2H2]GA20 and 17-[2H2]GA1 in shoot apices and whole seedlings, and of 17-[2H2]GA8 in whole seedlings, were confirmed by GC-MS.  相似文献   

4.
Seed maturation of Pisum sativum cv. Progress No. 9 proceeds more slowly in winter than in summer even when the parent plants are grown in greenhouse conditions with light-and heat-supplementation. For parent plants grown under summer and winter conditions the metabolism of [3H]GA9 in cultured seeds is qualitatively different in seeds of equivalent age and qualitatively the same in seeds of equivalent weight. 13-Hydroxylation of [3H]GA9[3H]GA20 is restricted to early stages of seed development. 2-Hydroxylation of [3H]GA92-OH-[3H]GA9 has only been observed at a stage of development after endogenous GA9 has accumulated. 2-OH-GA9 has been shown to be endogenous to pea and is named GA51. H2-GA31 and its conjugate have not been shown to be present in pea and may be induced metabolites of [3H]GA9. The metabolism of GA20GA29 is used to illustrate a technique of feeding [2H][3H]GAs in order to distinguish a metabolite from the same endogenous compound. The in vitro conversion of [3H]GA20[3H]GA29, and the virtual non-metabolism of [3H]GA29 have been confirmed for seeds in intact fruits. These results are discussed in relation to the apparent absence of conjugated GAs in mature pea seeds.Abbreviations GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - GC-RC combined gas chromatography-radio counting - Me methyl ester - RT etention time - SICM selected ion current monitoring - TLC thin layer chromatography - TMS trimethyl silyl ether The author is née Frydman  相似文献   

5.
The levels of the biologically active gibberellin (GA), GA1, and of its precursor, GA20, were monitored at several stages during ontogeny in the apical portions of isogenic tall (Le) and dwarf (le) peas (Pisum sativum L.) using deuterated internal standards and gas chromatography-selected ion monitoring. The levels of both GAs were relatively low on emergence and on impending apical arrest. At these early and late stages of development the internodes were substantially shorter than at intermediate stages, but were capable of large responses to applied GA3. Tall plants generally contained 10–18 times more GA1 and possessed internodes 2–3 times longer than dwarf plants. Further, dwarf plants contained 3–5 times more GA20 than tall plants. No conclusive evidence for the presence of GA3 or GA5 could be obtained, even with the aid of [2H2]GA3 and [2H2]GA5 internal standards. If GA3 and GA5 were present in tall plants, their levels were less than 0.5% and 1.4% of the level of GA1, respectively. Comparison of the effects of gene le on GA1 levels and internode length with the effects of ontogeny on these variables shows that the ontogenetic variation in GA1 content was sufficient to account for much of the observed variation in internode length within the wild-type. However, evidence was also obtained for substantial differences in the potential length of different internodes even when saturating levels of exogenous GA3 were present.Abreviations GAn gibberellin An We thank Noel Davies, Omar Hasan, Leigh Johnson, Katherine McPherson and Naomi Lawrence for technical help, Professor L. Mander (Australian National University, Canberra) for deuterated GA standards and the Australian Research Council for financial assistance.  相似文献   

6.
[2H, 3H]Gibberellin A4 (GA4) or [2H, 3H] GA9 were applied to the shoot tips of seedlings of elongated internode (ein), a tall mutant of rapid cycling Brassica rapa. Following [2H]GA9 application, [2H]GA51, [2H]GA20 and [2H]GA4 were identified as products by GC-MS, while [2H]GA34 and [2H]GA1 were formed from [2H]GA4. Other isotopically labelled products, including abundant putative conjugates, were also produced, but were not identified. Thus, in B. rapa, GA1 biosynthesis involves the convergence of at least two metabolic pathways; it can be formed via GA4 or GA20, the latter of which can originate from GA9 or from GA19.  相似文献   

7.
Cuttings of potato shoots treated with the plant growth retardant 2-chloroethyltrimethyl ammonium chloride (CCC) form tubers earlier and have less biologically-active gibberellin (GA)-like substances in the roots than control cuttings. The major GA-like substance in roots of potato cuttings was identified as GA3 by gas-chromatography-mass spectrometry (GC-MS). The content of GA3 in roots of control cuttings, estimated by GC-MS-selected ion monitoring (SIM) using [17, 17-2H]GA3 as a quantitative internal standard, was 38.8 ng per g fresh weight (fw), and in roots of CCC-treated cuttings, in which tuberization was promoted, was 0.6 ng per g fw. Gibberellin A1, GA8 and GA20 were also indicated as minor components of roots from both control and CCC-treated cuttings. The comparatively high GA3 content in roots of control cuttings might be the root factor responsible for delaying tuberization in potato.Abbreviations CCC 2-chloroethyltrimethyl ammonium chloride - dw dry weight - EtOAc ethyl acetate - GA gibberellin - GC-MS-SIM gas chromatography-mass spectrometry-selected ion monitoring - HPLC high performance liquid chromatography - IAA indole-3-acetic acid - KRI Kovats' retention index - MeOH methanol - MeTMSi methyl ester trimethylsilyl ether - NAA naphthalene acetic acid - SD short day(s) - 2,4-D 2,4-dichlorophenoxy acetic acid  相似文献   

8.
[3H]gibberellin A9 was applied to shoots or seed parts of G2 pea to produce radiolabeled metabolites. These were used as markers during purification for the recovery of endogenous GA9 and its naturally occurring metabolites. GA9 and its metabolites were purified by HPLC, derivatized and examined by GC-MS. Endogenous GA9, GA20, GA29 and GA51 were identified in pea shoots and seed coats. GA51-catabolite and GA29-catabolite were also detected in seed coats. GA70 was detected in seed coats following the application of 1 g of GA9. Applied [3H]GA9 was metabolized through both the 13-hydroxylation and 2-hydroxylation pathways. Labeled metabolites were tentatively identified on the basis of co-chromatography on HPLC with endogenous compounds identified by GC-MS. In shoots [3H]GA51 and [3H]GA51-catabolite were the predominant metabolites after 6 hrs, but by 24 hrs there was little of these metabolites remaining, while [3H]GA29-catabolite and an unidentified metabolite predominated. In seed coats [3H]GA51 was the initial product, later followed by [3H]GA51-catabolite and an unidentified metabolite (different from that in shoots), with lesser amounts of [3H]GA20, [3H]GA29 and [3H]GA29-catabolite. [3H]GA70 was a very minor product in both cases. [3H]GA9 was not metabolized by pea cotyledons.Edited by T.J. Gianfagna.Author for correspondence  相似文献   

9.
Y. Kamiya  N. Takahashi  J. E. Graebe 《Planta》1986,169(4):524-528
The fate of the carbon-20 atom in gibberellin (GA) biosynthesis was studied in a cell-free system from Pisum sativum. This carbon atom is lost at the aldehyde stage of oxidation when C20-GAs are converted to C19-GAs. Gibberellin A12 labeled with 14C at C-20 was prepared from [3-14C]mevalonic acid with a cell-free system from Cucurbita maxima and incubated with the pea system. Analysis of the gas and aqueous phases showed that 14CO2 was formed at the same rate and in nearly equivalent amounts as 14C-labeled C19-GAs whereas [14C]formic acid and [14C]formaldehyde were not detectable. The possibility that C-20 had been lost as formic acid which had then been converted to CO2 was investigated by control incubations with [14C]formic acid. The rate of release of 14CO2 from [14C]formic acid was only one fiftieth of the rate of 14CO2 release from [14C]GA12 as the substrate. We conclude that in the formation of C19-GAs from C20-GAs, the C-20 is removed directly as CO2.Abbreviations GAn Gibberellin An  相似文献   

10.
A mutant gene that increases gibberellin production in brassica   总被引:10,自引:7,他引:3  
A single gene mutant (elongated internode [ein/ein]) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A3 (GA3) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA1 and GA3 were estimated by gas chromatography-selected ion monitoring using [2H]GA1, as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA20 and GA1, and the rate of GA19 metabolism were simultaneously analyzed at day 7 by feeding [2H2]GA19 and measuring metabolites [2H2]GA20 and [2H2]GA1 and endogenous GA20 and GA1, with [2H5]GA20 and [2H5]GA1 as quantitative internal standards. Levels of GA1 and GA20 were 4.6- and 12.9-fold higher, respectively, and conversions to GA20 and GA1 were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA1 biosynthesis in ein, the conversion of [3H]GA20 to [3H]GA1 was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA1 biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A1 and A3. The enhanced GA production probably underlies the accelerated shoot growth and development, and particularly, the increased shoot elongation.  相似文献   

11.
V. M. Sponsel 《Planta》1986,168(1):119-129
The stem growth in darkness or in continuous red light of two pea cultivars, Alaska (Le Le, tall) and Progress No. 9 (le le, dwarf), was measured for 13 d. The lengths of the first three internodes in dark-grown seedlings of the two cultivars were similar, substantiating previous literature reports that Progress No. 9 has a tall phenotype in the dark. The biological activity of gibberellin A20 (GA20), which is normally inactive in le le geno-types, was compared in darkness and in red light. Alaska seedlings, regardless of growing conditions, responded to GA20. Dark-grown seedlings of Progress No. 9 also responded to GA20, although red-light-grown seedlings did not. Gibberellin A1 was active in both cultivars, in both darkness and red light. The metabolism of [13C3H]GA20 has also been studied. In dark-grown shoots of Alaska and Progress No. 9 [13C3H]GA20 is converted to [13C3H]GA1, [13C3H]GA8, [13C]GA29, its 2-epimer, and [13C3H]GA29-catabolite. [13C3H] Gibberellin A1 was a minor product which appeared to be rapidly turned over, so that in some feeds only its metabolite, [13C3H]GA8, was detected. However results do indicate that the tall growth habit of Progress No. 9 in the dark, and its ability to respond to GA20 in the dark may be related to its capacity to 3-hydroxylate GA20 to give GA1. In red light the overall metabolism of [13C3H]GA20 was reduced in both cultivars. There is some evidence that 3-hydroxylation of [13C3H]GA20 can occur in red light-grown Alaska seedlings, but no 3-hydroxylated metabolites of [13C3H]GA20 were observed in red light-grown Progress. Thus the dwarf habit of Progress No. 9 in red light and its inability to respond to GA20 may be related, as in other dwarf genotypes, to its inability to 3-hydroxylate GA20 to GA1. However identification and quantification of native GAs in both cultivars showed that red-light-grown Progress does contain native GA1. Thus the inability of red light-grown Progress No. 9 seedlings to respond to, and to 3-hydroxylate, applied GA20 may be due to an effect of red light on uptake and compartmentation of GAs.Abbreviations AMO-1618 2-isopropyl-4-(trimethylammonium chloride)-5-methylphenyl piperidine-1-carboxylate - cv. cultivar - GC-MS gas chromatography-mass spectrometry - GA(n) gibberellin A(n) - HPLC high-pressure liquid chromatography  相似文献   

12.
Elongation of hypocotyls of sunflower can be promoted by gibberellins (GAs) and inhibited by ethylene. The role of these hormones in regulating elongation was investigated by measuring changes in both endogenous GAs and in the metabolism of exogenous [3H]- and [2H2]GA20 in the hypocotyis of sunflower (Helianthus annuus L. cv Delgren 131) seedlings exposed to ethylene. The major biologically active GAs identified by gas chromatography-mass spectrometry were GA1, GA19, GA20, and GA44. In hypocotyls of seedlings exposed to ethylene, the concentration of GA1, known to be directly active in regulating shoot elongation in a number of species, was reduced. Ethylene treatment reduced the metabolism of [3H]GA20 and less [2H2]GA1 was found in the hypocotyls of those seedlings exposed to the higher ethylene concentrations. However, it is not known if the effect of ethylene on GA20 metabolism was direct or indirect. In seedlings treated with exogenous GA1 or GA3, the hypocotyls elongated faster than those of controls, but the GA treatment only partially overcame the inhibitory effect of ethylene on elongation. We conclude that GA content is a factor which may limit elongation in hypocotyls of sunflower, and that while exposure to ethylene results in reduced concentration of GA1 this is not sufficient per se to account for the inhibition of elongation caused by ethylene.  相似文献   

13.
Elongation growth and gibberellin (GA9) metabolism in excised hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Exogenously supplied GA9 stimulates elongation of hypocotyl sections and this response is intermediate between that elicited by GA1 or GA20 and GA4/7 mixture. Although uptake of radioactivity from [3H]GA9 increases with time, this gibberellin does not accumulate in the tissue but is rapidly converted to a compound with HPLC properties resembling those of [3H]GA20. After 2 h incubation in [3H]GA9, the presumptive GA20 represents 90% of the acidic ethyl acetate-soluble radioactivity in the tissue. Radioactivity is also associated with an acidic butanol-soluble fraction containing two components resolvable by HVE. The major component is similar in electrophoretic properties to a GA-glucosyl ether while the other compares to a GA-glucosyl ester. Conversion of [3H]GA9 to its [3H]GA20-like metabolite is reduced by addition of carrier GA9 or GA4/7 at concentrations as low as 1 M, while GA1, GA3 and L-proline are without effect. Formation of the GA20-like compound can be blocked by the addition of 2,2-dipyridyl, and this inhibitory effect of dipyridyl can be reversed by addition of Fe2+. At 200 M dipyridyl, elongation growth as well as [3H]GA9 metabolism are reduced by 80%. The relationship of the metabolism of GA9 to the growth response is discussed.Abbreviations AB butanol-soluble - AE ethyl-acetate-soluble - GA gibberellin - GA1, GA4 gibberellin A1, gibberellin A4, etc. - TLC thin layer chromatography - HPLC high performance liquid chromatography - HVE high voltage electrophoresis  相似文献   

14.
15.
Three enzymes of the gibberellin (GA) biosynthetic pathway, a 7-oxidase, a 20-oxidase and a 3-hydroxylase, were partially purified from Cucurbita maxima endosperm by ammonium sulfate precipitation, gel-filtration and anion-exchange chromatography. The enzyme activities, which were assayed by the oxidation of GA12-aldehyde to GA12, of GA12 to GA15 (and GA24) and of GA15 to GA37, respectively, were completely separated from each other. The apparent molecular masses as estimated by gel-filtration high-performance liquid chromatography were 34.5 kDa for the 7-oxidase, 44.5 kDa for the 20-oxidase and 58 kDa for the 3-hydroxylase. The Michaelis-Menten constants (K m) were 8.6 M, 0.15M and 8.7 M for the respective substrates. All three enzymes had properties typical of 2-oxoglutarate dependent dioxygenases. 2-Oxoglutarate was essential for activity and served as a co-substrate, giving K m values of 6.1 M, 91 M and 41 M with the 7-oxidase, 20-oxidase and 3-hydroxylase, respectively. Furthermore, 2 oxo[5-14C]glutarate was oxidised stoichiometrically to [14C]succinate when the GA-substrates were oxidised to their respective products, and the 11 ratio was maintained under different oxygen concentrations. Approximately equimolar amounts of 14CO2 were released from 2-oxo[1-14C]glutarate when GA12 was oxidised to GA15/24 by the 20-oxidase. A crude enzyme preparation containing all three enzyme activities (and a 2-hydroxylase) converted GA12-aldehyde to [18O2]GA4 and [18O5]GA43 under 18O2, showing that all O-atoms incorporated after GA12-aldehyde originate from O2. Accordingly, the reaction rates were near zero under anaerobic conditions, although very low concentrations of O2 sufficed to sustain the reactions. Both Fe2+ and dithiothreitol stimulated the enzyme activities strongly, but if they were added together, catalase was needed to prevent inhibition. The pH dependence showed two opposite trends; the 7-oxidase was most active at pH 6 and below, whereas the other enzymes were maximally active above pH 6.5.Abbreviations BSA bovine serum albumin - GAn gibberellin An - DTT dithiothreitol - GC-MS combined gas chromatography-mass spectrometry - MeTMSi methyl ester trimethylsilyl ether We thank Mr. Keith Hall (Long Ashton) for assistance with the oxygen concentration measurements and Mrs. Gudrun Bodtke (Göttingen) and Mrs. Brigitte Schattenberg (Göttingen) for able technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft, Germany, and the Agricultural and Food Research Council, UK, and by an Academic Research Collaboration award jointly from the Deutsche Akademische Austauschdienst (DAAD) and the British Council.  相似文献   

16.
Spray  Clive  Phinney  Bernard O.  Gaskin  Paul  Gilmour  Sarah J.  MacMillan  Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - RP reverse phase  相似文献   

17.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

18.
The metabolism of GA29 in maturing seeds of Pisum sativum cv. Progress No. 9 was further investigated, and the utility of 2H-labelled GAs in conjuction with GC-MS is illustrated. Using [2-2H1]GA29 as an internal standard, endogenous GA29 was shown to reach a maximal level (ca. 10 g/seed) 27 days from anthesis, and to decline to ca. 1.6 g/seed in mature seeds. In a time-course feed the metabolism of [2-2H1] [2-3H1]GA29 applied to 27 day old seeds, and of endogenous GA29, was compared from the 1H:2H ratios in the recovered GA29. Although both [2-2H1] [2-3H1]GA29 and endogenous GA29 were metabolised to the same limited extent to a putative conjugate, in the main metabolic process endogenous GA29 was preferentially converted to an untraceable (i.e. unlabelled) metabolite. In contrast, endogenous GA29 and [1,3-2H2] [1,3-3H2]GA29, derived from [1,3-2H2] [1,3-3H2]GA20 in a time-course feed, were metabolised in an identical manner. In the latter case isotope loss precluded identification of the metabolite. The structure (8) has been assigned to a GA catabolite present in maturing seeds and seedlings of pea. The isotope data are consistent with this compound being the hitherto untraced metabolite of GA29 in pea.Abbreviations GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - GC-RC combined gas chromatography-radio counting - M+ molecular ion - Me methyl ester - RT retention time - SICM selected ion current monitoring - TLC thin layer chromatography - TMS trimethylsilyl ether  相似文献   

19.
A dwarf mutant, M117, was isolated following sodium-azide mutagenesis of barley (Hordeum vulgare L. Himalaya). Treatment of the mutant with gibberellic acid (GA3) restored growth to levels of the tall parent, -Amylase production was examined in germinated grains of the dwarf mutant and in Himalaya plants treated with gibberellin (GA) biosynthesis inhibitors. The mutant showed reduced -amylase activity relative to the parent when grains were germinated on water, but activities were equivalent to the parent following germination on GA3 solution. Germination of normal or mutant grains in the presence of GA biosynthesis inhibitors led to reduced -amylase activity levels, but normal levels were restored if GA3 was included in the inhibitor solution. These data are consistent with a model in which -amylase production in the germinated grain is regulated by the supply of active GAs. Treatment of M117 with GA3 increased the length, fresh weight, dry weight, volume, cell number, and protein content of the first leaf. Proteins being synthesized in the first leaf were labelled with [35S]methionine and fractionated by two-dimensional electrophoresis. No reproducible qualitative or quantitative differences in protein profiles were detected in response to GA3 treatment. In contrast, first leaves from seedlings exposed to dehydration stress had profiles clearly distinguishable from those of control seedlings. Stem sections from dwarf plants maintained on 10 M GA3 in the presence of sucrose elongated significantly more than controls without GA3, but two-dimensional analysis of the [35S]methionine-labelled radioactive polypeptides again revealed no GA3-induced differences. It was concluded that enhanced elongation rates of leaves or stem segments were not associated with major changes in gene expression.Abbreviations 2D two-dimensional - GA gibberellin - GA3 gibberellic acid - PB paclobutrazol We would like to thank Dr Barbara Read (Agricultural Research Institute, Wagga Wagga, Australia) for assistance with growth of barley plants, and Tony Carter, Alison McInnes, and Mark Cmiel for skilled technical assistance.  相似文献   

20.
Gibberellin A4 (GA4) was identified for the first time in the garden pea (Pisum sativum) L.), by gas chromatography-mass spectrometry. However, in wild-type shoots the level of GA4 was only about 6% of the level of GA1, and it is therefore unlikely that GA4 plays a major role per se in the control of pea stem elongation. In shoots of the le mutant, GA4 was not detected, while the level of GA9 was approximately twice that found in the wild-type. The le mutation also markedly reduced the elongation response to applied GA9. It appears, therefore, that in Pisum the le mutation blocks the 3-hydroxylation of GA9 to GA4, in addition to the 3-hydroxylation of GA20 to GA1. In contrast, the le mutation did not reduce the response to applied GA5, suggesting the step GA5 to GA3 is not catalysed by the enzyme controlled by the Le gene. The step GA5 to GA3 was confirmed in peas by metabolite analysis after treatment with deuterated GA5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号