首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cortico-cortical connections from the prefrontal cortex to the superior temporal sulcal cortex (STs area) were studied in the monkey by means of retrograde axonal transport of horseradish peroxidase (HRP). After injections of 0.15-0.6 microliter of 50% HRP into the STs area, labeled cells were found in various cortical regions. In the prefrontal-STs projections, main features of topographic correlation were revealed; the posterior part of the STs area receives fibers from the superior frontal convexity (areas dorsal to the principal sulcus) and areas 8 and 6, whereas the anterior part of the STs area receives fibers from the inferior frontal convexity (areas ventral to the principal sulcus) and the frontal pole (area FD). The principal sulcus sends fibers to the entire STs area except for its ventral wall of the posterior part. A small cortical area adjacent to the inferior ramus of the arcuate sulcus (area 45 of ref. 41) sends fibers to the entire STs area. In addition, the orbitofrontal cortex projects mainly to the rostral part of the STs area, and the parahippocampal gyrus (areas TF and TH) projects to the deeper part of the entire STs area.  相似文献   

2.
Cortico-cortical connections occurring within the temporal lobe and afferent projections to the temporal cortex particularly from the prefrontal and parahippocampal areas were studied in the monkey by means of retrograde axonal transport of horseradish peroxidase (HRP) or wheat-germ-agglutinin-conjugated HRP (WGA-HRP). In particular, 0.1-0.3 microliter of 50% HRP or 5% WGA-HRP was injected into various parts of the temporal cortex, i.e. the rostral (TEr), the caudal (TEc), and the most caudal (TEO) parts of the inferotemporal cortex, the superior temporal gyrus, and the temporal pole (TG), and in the upper bank of the inferior arcuate sulcus in the frontal lobe. Labeled cells, which represent cells of origin of association fibers projecting to the injection site, appeared in various cortical regions. The main findings of the present study are the following. The temporal pole (TG) receives fibers almost exclusively from the most rostral part of the TE. The rostral part of the TE receives many fibers from both the caudal part of the TE and the TEO. The caudal part of the TE receives fibers from the TEO, and the TEO from the prestriate cortex (OA and OB). Taking these findings together, the morphological basis of the "step-wise" progression of visual impulses from the prestriate cortex to the TEO, TE and finally to the TG is clearly presented. The superior temporal gyrus (TA or area 22) receives most fibers from the dorsolateral frontal gyrus, while the inferotemporal cortex (TE or areas 21 and 20) receives most fibers from the ventrolateral frontal gyrus (inferior frontal convexity). Both the temporal pole (TG) and the inferotemporal cortex (TE) receives a fair number of fibers from the parahippocampal region (TH and TF).  相似文献   

3.
The cortical connections of the dorsal (PMd) and ventral (PMv) subdivisions of the premotor area (PM, lateral area 6) were studied in four monkeys (Macaca fascicularis) through the use of retrograde tracers. In two animals, tracer was injected ventral to the arcuate sulcus (PMv), in a region from which forelimb movements could be elicited by intracortical microstimulation (ICMS). Tracer injections dorsal to the arcuate sulcus (PMd) were made in two locations. In one animal, tracer was injected caudal to the genu of the arcuate sulcus (in caudal PMd [cPMd], where ICMS was effective in eliciting forelimb movements); in another animal, it was injected rostral to the genu of the arcuate sulcus (in rostral PMd [rPMd], where ICMS was ineffective in eliciting movements). Retrogradely labeled neurons were counted in the ipsilateral hemisphere and located in cytoarchitectonically identified areas of the frontal and parietal lobes. Although both PMv and PMd were found to receive inputs from other motor areas, the prefrontal cortex, and the parietal cortex, there were differences in the topography and the relative strength of projections from these areas.

There were few common inputs to PMv and PMd; only the supplementary eye fields projected to all three areas studied. Interconnections within PMd or PMv appeared to link hindlimb and forelimb representations, and forelimb and face representations; however, connections between PMd and PMv were sparse. Areas cPMd and PMv were found to receive inputs from other motor areas—the primary motor area, the supplementary motor area, and the cingulate motor area—but the topography and strength of projections from these areas varied. Area rPMd was found to receive sparse inputs, if any, from these motor areas. The frontal eye field (area 8a) was found to project to PMv and rPMd, and area 46 was labeled substantially only from rPMd. Parietal projections to PMv were found to originate from a variety of somatosensory and visual areas, including the second somatosensory cortex and related areas in the parietal operculum of the lateral sulcus, as well as areas 5, 7a, and 7b, and the anterior intraparietal area. By contrast, projections to cPMd arose only from area 5. Visual areas 7m and the medial intraparietal area were labeled from rPMd. Relatively more parietal neurons were labeled after tracer injections in PMv than in PMd. Thus, PMv and PMd appear to be parts of separate, parallel networks for movement control.  相似文献   

4.
The homologues of the two distinct architectonic areas 44 and 45 that constitute the anterior language zone (Broca's region) in the human ventrolateral frontal lobe were recently established in the macaque monkey. Although we know that the inferior parietal lobule and the lateral temporal cortical region project to the ventrolateral frontal cortex, we do not know which of the several cortical areas found in those regions project to the homologues of Broca's region in the macaque monkey and by means of which white matter pathways. We have used the autoradiographic method, which permits the establishment of the cortical area from which axons originate (i.e., the site of injection), the precise course of the axons in the white matter, and their termination within particular cortical areas, to examine the parietal and temporal connections to area 44 and the two subdivisions of area 45 (i.e., areas 45A and 45B). The results demonstrated a ventral temporo-frontal stream of fibers that originate from various auditory, multisensory, and visual association cortical areas in the intermediate superolateral temporal region. These axons course via the extreme capsule and target most strongly area 45 with a more modest termination in area 44. By contrast, a dorsal stream of axons that originate from various cortical areas in the inferior parietal lobule and the adjacent caudal superior temporal sulcus was found to target both areas 44 and 45. These axons course in the superior longitudinal fasciculus, with some axons originating from the ventral inferior parietal lobule and the adjacent superior temporal sulcus arching and forming a simple arcuate fasciculus. The cortex of the most rostral part of the inferior parietal lobule is preferentially linked with the ventral premotor cortex (ventral area 6) that controls the orofacial musculature. The cortex of the intermediate part of the inferior parietal lobule is linked with both areas 44 and 45. These findings demonstrate the posterior parietal and temporal connections of the ventrolateral frontal areas, which, in the left hemisphere of the human brain, were adapted for various aspects of language production. These precursor circuits that are found in the nonlinguistic, nonhuman, primate brain also exist in the human brain. The possible reasons why these areas were adapted for language use in the human brain are discussed. The results throw new light on the prelinguistic precursor circuitry of Broca's region and help understand functional interactions between Broca's ventrolateral frontal region and posterior parietal and temporal association areas.  相似文献   

5.
The cortical sensory projections of somatic, auditory, and visual origin have been mapped in the chloralosed potto. The pathways of the contralateral side of the body project in a classical somatotopic fashion to a large area SI, behind the motor cortex and the central sulcus. The latter constitutes the posterior boundary of the motor cortex only in its ventral part. In its middle zone the motor cortex extends to its posterior lip. Above the sulcus the motor zone is immediately adjacent to the preparietal area. Visual evoked potentials are recorded behind the transverse occipital sulcus with a maximal focus just caudal to an occipital dimple. The auditory area is situated between the sylvian and parallel sulci. No heterosensory potentials (visual or auditory) can be recorded from the somatomotor area, nor from any other part outside their primary projection area. An area of convergent somatic projection devoid of somatotopic organization is found between SI and the auditory zone and another one in front of the central sulcus. In view of the poor cortical heterosensory integration, the sensory projection system of the potto seems to be less developed than in the cat.  相似文献   

6.
The projections to the retrosplenial cortex (areas 29 and 30) from the hippocampal formation, the entorhinal cortex, perirhinal cortex, and amygdala were examined in two species of macaque monkey by tracking the anterograde transport of amino acids. Hippocampal projections arose from the subiculum and presubiculum to terminate principally in area 29. Label was found in layer I and layer III(IV), the former seemingly reflecting both fibers of passage and termination. While the rostral subiculum mainly projects to the ventral retrosplenial cortex, mid and caudal levels of the subiculum have denser projections to both the caudal and dorsal retrosplenial cortex. Appreciable projections to dorsal area 30 [layer III(IV)] were only seen following an extensive injection involving both the caudal subiculum and presubiculum. This same case provided the only example of a light projection from the hippocampal formation to posterior cingulate area 23 (layer III). Anterograde label from the entorhinal cortex injections was typically concentrated in layer I of 29a-c, though the very caudal entorhinal cortex appeared to provide more widespread retrosplenial projections. In this study, neither the amygdala nor the perirhinal cortex were found to have appreciable projections to the retrosplenial cortex, although injections in either medial temporal region revealed efferent fibers that pass very close or even within this cortical area. Finally, light projections to area 30V, which is adjacent to the calcarine sulcus, were seen in those cases with rostral subiculum and entorhinal injections. The results reveal a particular affinity between the hippocampal formation and the retrosplenial cortex, and so distinguish areas 29 and 30 from area 23 within the posterior cingulate region. The findings also suggest further functional differences within retrosplenial subregions as area 29 received the large majority of efferents from the subiculum. ? 2012 Wiley Periodicals, Inc.  相似文献   

7.
Using fMRI, we showed that an area in the ventral temporo-occipital cortex (area vTO), which is part of the human homolog of the ventral stream of visual processing, exhibited priming for both identical and depth-rotated images of objects. This pattern of activation in area vTO corresponded to performance in a behavioral matching task. An area in the caudal part of the intraparietal sulcus (area cIPS) also showed priming, but only with identical images of objects. This dorsal-stream area treated rotated images as new objects. The difference in the pattern of priming-related activation in the two areas may reflect the respective roles of the ventral and dorsal streams in object recognition and object-directed action.  相似文献   

8.
9.
In monkeys, posterior parietal and premotor cortex play an important integrative role in polymodal motion processing. In contrast, our understanding of the convergence of senses in humans is only at its beginning. To test for equivalencies between macaque and human polymodal motion processing, we used functional MRI in normals while presenting moving visual, tactile, or auditory stimuli. Increased neural activity evoked by all three stimulus modalities was found in the depth of the intraparietal sulcus (IPS), ventral premotor, and lateral inferior postcentral cortex. The observed activations strongly suggest that polymodal motion processing in humans and monkeys is supported by equivalent areas. The activations in the depth of IPS imply that this area constitutes the human equivalent of macaque area VIP.  相似文献   

10.
Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance imaging brain volumes registered in the Montreal Neurological Institute stereotaxic space. It was demonstrated that the IPS is divided into two branches: the anterior ramus and the posterior ramus of the IPS, often separated by a submerged gyral passage. The sulcus of Jensen emerges between the anterior and posterior rami of the IPS, and its ventral end is positioned between the first and second caudal branches of the superior temporal sulcus. In a small number of brains, the sulcus of Jensen may merge superficially with the first caudal branch of the superior temporal sulcus. The above morphological findings are discussed in relation to previously reported functional neuroimaging findings and provide the basis for future exploration of structure-to-function relations in the posterior parietal region of individual subjects.  相似文献   

11.
Stoet G  Snyder LH 《Neuron》2004,42(6):1003-1012
The primate posterior parietal cortex (PPC), part of the dorsal visual pathway, is best known for its role in encoding salient spatial information. Yet there are indications that neural activity in the PPC can also be modulated by nonspatial task-related information. In this study, we tested whether neurons in the PPC encode signals related to cognitive set, that is, the preparation to perform a particular task. Cognitive set has previously been associated with the frontal cortex but not the PPC. In this study, monkeys performed a cognitive set shifting paradigm in which they were cued in advance to apply one of two different task rules to the subsequent stimulus on every trial. Here we show that a subset of neurons in the PPC, concentrated in the lateral bank of the intraparietal sulcus and on the angular gyrus, responds selectively to cues for different task rules.  相似文献   

12.
A horseradish peroxidase study on the mammillothalamic tract in the rat   总被引:1,自引:0,他引:1  
K Watanabe  E Kawana 《Acta anatomica》1980,108(3):394-401
The mammillary projections to the anterior thalamic nuclei were investigated in the rat, using the horseradish peroxidase (HRP) method. Pars centralis of the medial mammillary nucleus projects to the medial portion of the ateromedial nucleus (AM). Pars medialis (Mm) of the medial mammillary nucleus sends fibers to the ipsilateral AM and sparsely to the medial portion of the contralateral side. The ventral and dorsal portions of Mm project to the anterior and posterior portions of AM, respectively. The pars latralis (Ml) and pars posterior (Mp) of the medial mammillary nucleus send fibers predominantly to the ipsilateral anteroventral nucleus and sparsely to the contralateral side. A slight difference between Ml and Mp projections was observed. The lateral mammillary nucleus projects bilaterally to the anterodorsal nucleus.  相似文献   

13.
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.  相似文献   

14.
There is much evidence in primates' visual processing for distinct mechanisms involved in object recognition and encoding object position and motion, which have been identified with 'ventral' and 'dorsal' streams, respectively, of the extra-striate visual areas [1] [2] [3]. This distinction may yield insights into normal human perception, its development and pathology. Motion coherence sensitivity has been taken as a test of global processing in the dorsal stream [4] [5]. We have proposed an analogous 'form coherence' measure of global processing in the ventral stream [6]. In a functional magnetic resonance imaging (fMRI) experiment, we found that the cortical regions activated by form coherence did not overlap with those activated by motion coherence in the same individuals. Areas differentially activated by form coherence included regions in the middle occipital gyrus, the ventral occipital surface, the intraparietal sulcus, and the temporal lobe. Motion coherence activated areas consistent with those previously identified as V5 and V3a, the ventral occipital surface, the intraparietal sulcus, and temporal structures. Neither form nor motion coherence activated area V1 differentially. Form and motion foci in occipital, parietal, and temporal areas were nearby but showed almost no overlap. These results support the idea that form and motion coherence test distinct functional brain systems, but that these do not necessarily correspond to a gross anatomical separation of dorsal and ventral processing streams.  相似文献   

15.
大鼠隔区接受海马一氧化氮合酶(NOS)阳性神经元的投射   总被引:1,自引:0,他引:1  
目的逆行追踪大鼠海马NOS阳性神经元向隔区的投射。方法用HRP逆行追踪与NADPH-d组化方法相结合进行研究。结果背、腹、后海马均有NOS阳性神经元投射至隔区各亚细胞群,后海马NOS阳性神经元向隔外侧核(sl)、隔三角核和隔伞核(ts,sf)的投射量,占后海马至隔外侧核、隔三角核和隔伞核投射量的80%左右。结论大鼠隔区接受海马NOS神经元的投射。  相似文献   

16.
Adopting an unusual posture can sometimes give rise to paradoxical experiences. For example, the subjective ordering of successive unseen tactile stimuli delivered to the two arms can be affected when people cross them. A growing body of evidence now highlights the role played by the parietal cortex in spatio-temporal information processing when sensory stimuli are delivered to the body or when actions are executed; however, little is known about the neural basis of such paradoxical feelings resulting from such unusual limb positions. Here, we demonstrate increased fMRI activation in the left posterior parietal cortex when human participants adopted a crossed hands posture with their eyes closed. Furthermore, by assessing tactile temporal order judgments (TOJs) in the same individuals, we observed a positive association between activity in this area and the degree of reversal in TOJs resulting from crossing arms. The strongest positive association was observed in the left intraparietal sulcus. This result implies that the left posterior parietal cortex may be critically involved in monitoring limb position and in spatio-temporal binding when serial events are delivered to the limbs.  相似文献   

17.
This study examined the architectonic organization of the macaque's primary somatosensory cortex near the tip of the intraparietal sulcus (IPS), using myelin and Nissl stains plus immunohistochemical labeling with the SMI-32 antibody. The surface cortex between the IPS and central sulcus (overlapping area 2) was distinguished from surrounding cortex (areas 1 and 5) by relatively light SMI-32 immunoreactivity. This distinguishing architectonic feature was most evident between the post-central dimple and cortex immediately anterior to the tip of the IPS. Physiological mappings verified that the architectonic transition correlated with a change in receptive field properties, consistent with their marking the boundary between areas 2 and 5. These results suggest that area 2 occupies surface cortex anterior to the IPS, but not within the IPS.  相似文献   

18.
It has long been appreciated that the posterior parietal cortex plays a role in the processing of saccadic eye movements. Only recently has it been discovered that a small cortical area, the lateral intraparietal area, within this much larger area appears to be specialized for saccadic eye movements. Unlike other cortical areas in the posterior parietal cortex, the lateral intraparietal area has strong anatomical connections to other saccade centers, and its cells have saccade-related responses that begin before the saccades. The lateral intraparietal area appears to be neither a strictly visual nor strictly motor structure; rather it performs visuomotor integration functions including determining the spatial location of saccade targets and forming plans to make eye movements.  相似文献   

19.
This study examined the architectonic organization of the macaque's primary somatosensory cortex near the tip of the intraparietal sulcus (IPS), using myelin and Nissl stains plus immunohistochemical labeling with the SMI-32 antibody. The surface cortex between the IPS and central sulcus (overlapping area 2) was distinguished from surrounding cortex (areas 1 post-central dimple and cortex immediately anterior to the tip of the IPS. Physiological mappings verified that the and 5) by relatively light SMI-32 immunoreactivity. This distinguishing architectonic feature was most evident between the architectonic transition correlated with a change in receptive field properties, consistent with their marking the boundary between areas 2 and 5. These results suggest that area 2 occupies surface cortex anterior to the IPS, but not within the IPS.  相似文献   

20.
Price  Joseph L. 《Chemical senses》1985,10(2):239-258
The extrinsic projections from the primary olfactory cortexto other areas of the forebrain in the rat are described, onthe basis of experiments using anterograde and retrograde axonaltracers, as well as electrophysiological recording of unit activity.The areas shown to receive olfactory inputs are (i) in the neocortex:the lateral and ventrolateral orbital areas, and the ventralagranular insular area, all of which are in the dorsal bankof the rhinal sulcus; (ii) in the thalamus: the central segmentof the mediodorsal nucleus and the ventral part of the submedicalnucleus; (iii) in the hypothalamus: the lateral hypothalamicarea, especially its caudal half, and probably the nucleus gemiru,with some input also to more medial hypothalamic structures;(iv) the hippocampus and dentate gyrus; and (v) the deep nucleiof the amygdala. Anterograde and retrograde axonal tracing experimentshave shown that all of these areas receive fibers from cellsin or closely related to the primary olfactory cortex, and cellsin all of them except the nucleus gemini and the deep nucleiof the amygdala have been shown to be driven by electrical stimulationof the olfactory bulb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号