首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turkan A  Hiromasa Y  Roche TE 《Biochemistry》2004,43(47):15073-15085
Pyruvate dehydrogenase phosphatase isoform 1 (PDP1) is a heterodimer with a catalytic subunit (PDP1c) and a regulatory subunit (PDP1r). The activities of PDP1 or just PDP1c are greatly increased by Ca(2+)-dependent binding to the L2 (inner lipoyl) domain of the dihydrolipoyl acetyltransferase (E2) core. Using EGTA-Ca buffers, the dependence of PDP1 or PDP1c on the level of free Ca(2+) was evaluated in activity and L2 binding studies. An increase in the Mg(2+) concentration decreased the Ca(2+) concentration required for half-maximal activation of PDP1 from 3 to 1 microM, but this parameter was unchanged at 3 microM with PDP1c. Near 1 microM Ca(2+), tight binding of PDP1 but not PDP1c to gel-anchored L2 required Mg(2+). With just Ca(2+) included, some PDP1c separated from PDP1r and remained more tightly bound to L2 than intact PDP1. Thus, formation of the PDP1c.Ca(2+).L2 complex is supported by micromolar Ca(2+) concentrations and becomes sensitive to the Mg(2+) level when PDP1c is bound to PDP1r. Sedimentation velocity and equilibrium studies revealed that PDP1c exists as a reversible monomer/dimer mixture with an equilibrium dissociation constant of 8.0 +/- 2.5 microM. L2 binds tightly and preferentially to the PDP1c monomer. Approximately 45 PDP1c monomers bind to the E2 60mer with a K(d) of approximately 0.3 microM. Isothermal titration calorimetry and (45)Ca(2+) binding studies failed to detect binding of Ca(2+) (<100 microM) to L2 or PDP1c, alone, but readily detected binding to L2 and PDP1c. Therefore, both proteins are required for formation of a complex with tightly held Ca(2+), and complex formation hinders the tendency of PDP1c to form a dimer.  相似文献   

2.
Pyruvate dehydrogenase kinase isoforms (PDK1-4) are the molecular switch that down-regulates activity of the human pyruvate dehydrogenase complex through reversible phosphorylation. We showed previously that binding of the lipoyl domain 2 (L2) of the pyruvate dehydrogenase complex to PDK3 induces a "cross-tail" conformation in PDK3, resulting in an opening of the active site cleft and the stimulation of kinase activity. In the present study, we report that alanine substitutions of Leu-140, Glu-170, and Glu-179 in L2 markedly reduce binding affinities of these L2 mutants for PDK3. Unlike wildtype L2, binding of these L2 mutants to PDK3 does not preferentially reduce the affinity of PDK3 for ADP over ATP. The inefficient removal of product inhibition associated with ADP accounts for the decreased stimulation of PDK3 activity by these L2 variants. Serial truncations of the PDK3 C-terminal tail region either impede or abolish the binding of wild-type L2 to the PDK3 mutants, resulting in the reduction or absence of L2-enhanced kinase activity. Alanine substitutions of residues Leu-27, Phe-32, Phe-35, and Phe-48 in the lipoyl-binding pocket of PDK3 similarly nullify L2 binding and L2-stimulated PDK3 activity. Our results indicate that the above residues in L2 and residues in the C-terminal region and the lipoyl-binding pocket of PDK3 are critical determinants for the cross-talk between L2 and PDK3, which up-regulates PDK3 activity.  相似文献   

3.
Four pyruvate dehydrogenase kinase and two pyruvate dehydrogenase phosphatase isoforms function in adjusting the activation state of the pyruvate dehydrogenase complex (PDC) through determining the fraction of active (nonphosphorylated) pyruvate dehydrogenase component. Necessary adaptations of PDC activity with varying metabolic requirements in different tissues and cell types are met by the selective expression and pronounced variation in the inherent functional properties and effector sensitivities of these regulatory enzymes. This review emphasizes how the foremost changes in the kinase and phosphatase activities issue from the dynamic, effector-modified interactions of these regulatory enzymes with the flexibly held outer domains of the core-forming dihydrolipoyl acetyl transferase component.  相似文献   

4.
A facile one-step affinity chromatographic purification of the recombinant catalytic subunit (PDPc) of bovine pyruvate dehydrogenase phosphatase (PDP) to near homogeneity is described. PDPc binds in the presence of Ca(2+) to the inner lipoyl domain (L2) of the dihydrolipoamide acetyltransferase component (E2) of the mammalian pyruvate dehydrogenase complex. The affinity column consists of a glutathione S-transferase (GST)-L2 fusion protein bound to glutathione-Sepharose 4B beads. An extract of transformed Escherichia coli cells containing 50 mM Tris buffer (pH 7.5), 2 mM CaCl(2), 5 mM MgCl(2,) 150 mM NaCl, 0.5 mM dithiothreitol, 1% Triton X-100, and l M urea was passed through the affinity column, and the column was washed extensively with this buffer mixture. PDPc was eluted with 50 mM Tris buffer (pH 7.5) containing 5 mM MgCl(2), 0.5 mM dithiothreitol, and 1 mM EGTA. Approximately 22 mg of highly purified PDPc was obtained from 10 g (wet weight) of transformed cells. The preparation contained a small amount of a "nicked" form of PDPc. The cleavage is between Arg-394 and Arg-395.  相似文献   

5.
A protein phosphatase from liver which acts preferentially on histone phosphorylated with phospholipid, Ca2+-dependent protein kinase has been purified and the intrinsic specificity determined to reside in the catalytic subunit of the enzyme complex. Comparison with a preparation of pork heart protein phosphatase suggests that this specificity may be a general property of a class of protein phosphatases. Protein kinase C-phosphorylated histone H1 represents an improved substrate for phosphatase detection providing a five to tenfold greater sensitivity than other substrates including cAMP-dependent protein kinase phosphorylated H1.  相似文献   

6.
Mitochondria from rat epididymal white adipose tissue were made permeable to small molecules by toluene treatment and were used to investigate the effects of Mg2+ and Ca2+ on the re-activation of pyruvate dehydrogenase phosphate by endogenous phosphatase. Re-activation of fully phosphorylated enzyme after addition of 0.18 mM-Mg2+ showed a marked lag of 5-10 min before a maximum rate of reactivation was achieved. Increasing the Mg2+ concentration to 1.8 mM (near saturating) or the addition of 100 microM-Ca2+ resulted in loss of the lag phase, which was also greatly diminished if pyruvate dehydrogenase was not fully phosphorylated. It is concluded that, within intact mitochondria, phosphatase activity is highly sensitive to the degree of phosphorylation of pyruvate dehydrogenase and that the major effect of Ca2+ may be to overcome the inhibitory effects of sites 2 and 3 on the dephosphorylation of site 1. Apparent K0.5 values for Mg2+ and Ca2+ were determined from the increases in pyruvate dehydrogenase activity observed after 5 min. The K0.5 for Mg2+ was diminished from 0.60 mM at less than 1 nM-Ca2+ to 0.32 mM at 100 microM-Ca2+; at 0.18 mM-Mg2+, the K0.5 for Ca2+ was 0.40 microM. Ca2+ had little or no effect at saturating Mg2+ concentrations. Since effects of Ca2+ are readily observed in intact coupled mitochondria, it follows that Mg2+ concentrations within mitochondria are sub-saturating for pyruvate dehydrogenase phosphate phosphatase and hence less than 0.5 mM.  相似文献   

7.
Norepinephrine and epinephrine, in the presence of the beta-adrenergic antagonist propranolol (10(-5) M), stimulated adipocyte pyruvate dehydrogenase at low concentrations but inhibited the enzyme at higher concentrations. The alpha-adrenergic agonist, phenylephrine, rapidly stimulated pyruvate dehydrogenase activity in a dose-dependent manner with maximal stimulation observed at 10(-6) M. The stimulation of pyruvate dehydrogenase by phenylephrine was mediated via alpha 1-receptors. Inhibition of pyruvate dehydrogenase by catecholamines was mediated via beta-adrenergic receptors, since the beta-agonist, isoproterenol, and dibutyryl cAMP produced similar effects. Like insulin, alpha-adrenergic agonists increased the active form of pyruvate dehydrogenase without changing the total enzyme activity and cellular ATP concentration. The effects induced by maximally effective concentrations of insulin and alpha-adrenergic agonists were nonadditive. The ability of phenylephrine and methoxamine to stimulate pyruvate dehydrogenase and phosphorylase and to inhibit glycogen synthase was not affected by the removal of extracellular Ca2+. Similarly, the stimulation of pyruvate dehydrogenase and glycogen synthase by insulin was also observed under the same conditions. However, when intracellular adipocyte Ca2+ was depleted by incubating cells in a Ca2+-free buffer containing 1 mM ethylene glycol bis(beta-amino-ethyl ether)-N,N,N' -tetraacetic acid, the actions of alpha-adrenergic agonists, but not insulin, on pyruvate dehydrogenase were completely abolished. Vasopressin and angiotensin II also stimulated pyruvate dehydrogenase in a dose-dependent manner with enhancement of glucose oxidation and lipogenesis. Our results demonstrate that the Ca2+ -dependent hormones stimulate pyruvate dehydrogenase and lipogenesis in isolated rat adipocytes, and the action is dependent upon intracellular, but not extracellular, Ca2+.  相似文献   

8.
Hiromasa Y  Yan X  Roche TE 《Biochemistry》2008,47(8):2312-2324
Association of the PDHK2 and GST-L2 (glutathione-S-transferase fused to the inner lipoyl domain (L2) of dihydrolipoyl acetyltransferase (E2)) dimers was enhanced by K+ with higher affinity K+ binding than occurs at the PDHK2 active site. Supporting a distinct K+ binding site, the NH4+ ion did not effectively replace K+ in aiding GST-L2 binding. With 50 mM K+, Pi enhanced interference by ADP, ATP, or pyruvate of PDHK2 binding to GST-L2. The inclusion of Pi with ADP or ATP plus pyruvate greatly hindered PDHK2 binding to GST-L2 and promoted PDHK2 forming a tetramer. Reciprocally, GST-L2 interference with ATP/ADP binding also required elevated K+ and was increased by Pi. Potent inhibition by Nov3r of E2-activated PDHK2 activity (IC50 of approximately 7.8 nM) required elevated K+ and Pi. Nov3r only modestly inhibited the low activity of PDHK2 without E2. By binding at the lipoyl group binding site, Nov3r prevented PDHK2 binding to E2 and GST-L2. Nov3r interfered with high-affinity binding of ADP and pyruvate via a Pi-dependent mechanism. Thus, GST-L2 binding to PDHK2 is supported by K+ binding at a site distinct from the active site. Pi makes major contributions to ligands interfering with PDHK2 binding to GST-L2, the conversion of PDHK2 dimer to a tetramer, and Nov3r (an acetyl-lipoate analog) interfering with binding of ADP and pyruvate. Pi is suggested to facilitate transmission within PDHK2 of the stimulatory signal of acetylation from the distal lipoyl-group binding site to the active site.  相似文献   

9.
The dihydrolipoamide S-acetyltransferase (E2) subunit of the maize mitochondrial pyruvate dehydrogenase complex (PDC) was postulated to contain a single lipoyl domain based upon molecular mass and N-terminal protein sequence (Thelen, J. J., Miernyk, J. A., and Randall, D. D. (1998) Plant Physiol. 116, 1443-1450). This sequence was used to identify a cDNA from a maize expressed sequence tag data base. The deduced amino acid sequence of the full-length cDNA was greater than 30% identical to other E2s and contained a single lipoyl domain. Mature maize E2 was expressed in Escherichia coli and purified to a specific activity of 191 units mg(-1). The purified recombinant protein had a native mass of approximately 2.7 MDa and assembled into a 29-nm pentagonal dodecahedron as visualized by electron microscopy. Immunoanalysis of mitochondrial proteins from various plants, using a monoclonal antibody against the maize E2, revealed 50-54-kDa cross-reacting polypeptides in all samples. A larger protein (76 kDa) was also recognized in an enriched pea mitochondrial PDC preparation, indicating two distinct E2s. The presence of a single lipoyl-domain E2 in Arabidopsis thaliana was confirmed by identifying a gene encoding a hypothetical protein with 62% amino acid identity to the maize homologue. These data suggest that all plant mitochondrial PDCs contain an E2 with a single lipoyl domain. Additionally, A. thaliana and other dicots possess a second E2, which contains two lipoyl domains and is only 33% identical at the amino acid level to the smaller isoform. The reason two distinct E2s exist in dicotyledon plants is uncertain, although the variability between these isoforms, particularly within the subunit-binding domain, suggests different roles in assembly and/or function of the plant mitochondrial PDC.  相似文献   

10.
(1) Rat heart mitochondria, permeabilized to all low Mr solutes by toluene treatment, have been used to study the regulation in situ of the phosphatase and kinase components of the pyruvate dehydrogenase complex (PDH) by Ca2+. (2) Inactivation of the complex, resulting from phosphorylation by the kinase, and reactivation induced by the phosphatase, were both apparent first-order processes. This behaviour of the phosphatase differs from that observed with toluene-permeabilized adipose tissue mitochondria (Midgley, P.J.W., Rutter, G.A. and Denton, R.M. (1987) Biochem. J. 241, 271-377) where a 'lag phase' preceded reactivation of inactive complex. Further, reactivation due to phosphatase activity was stimulated by Ca2+ only at subsaturating Mg2+ concentrations, in contrast with the extracted enzyme which is stimulated by Ca2+ at all Mg2+ concentrations. (3) Maximum values of half-times observed for inactivation and reactivation were about 10 and 15 s, respectively, at 30 degrees C. (4) At Mg2+ concentrations where effects of Ca2+ on the activity of the phosphatase were apparent, no effect of Ca2+ on the activity of the kinase could be detected. (5) The sensitivity of the phosphatase to [Ca2+] was essentially unchanged in the presence of either ADP or ATP, with half-maximal effects at 0.7 microM in each case.  相似文献   

11.
The lipoyl domains of the dihydrolipoyl acyltransferase (E2p, E2o) components of the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes are specifically recognised by their cognate 2-oxo acid decarboxylase (E1p, E1o). A prominent surface loop links the first and second beta-strands in all lipoyl domains, close in space to the lipoyl-lysine beta-turn. This loop was subjected to various modifications by directed mutagenesis of a sub-gene encoding a lipoyl domain of Escherichia coli E2p. Deletion of the loop (four residues) rendered the domain incapable of reductive acetylation by E. coli E1p in the presence of pyruvate, but insertion of a new loop (six residues) corresponding to that in the E2o lipoyl domain partly restored this ability, albeit with a much lower rate. However, the modified domain remained unable to undergo reductive succinylation by E1o in the presence of 2-oxoglutarate. Additional exchange of the two residues on the C-terminal side of the loop (V14A, E15T) had no effect. Insertion of a different four-residue loop also restored a limited ability to undergo reductive acetylation, but still significantly less than that of the wild-type domain. Exchanging the residue on the N-terminal side of the lipoyl-lysine beta-turn in the E2p and E2o domains (G39T), both singly and in conjunction with the loop exchange, had no effect on the ability of the E2p domain to be reductively acetylated but did confer a slight increase in susceptibility to reductive succinylation. All mutant E2p domains, apart from that with the loop deletion (LD), were readily lipoylated in vitro by E. coli lipoate protein ligase A; the E2p LD mutant could be lipoylated only at a significantly lower rate. Likewise, this domain exhibited 1D and 2D NMR spectra characteristic of a partially folded protein, whereas the spectra of mutants with modified loops were similar to those of the wild-type domain. The surface loop is evidently important to the structural integrity of the domain and may help to stabilize the thioester bond linking the acyl group to the reduced lipoyl-lysine swinging arm as part of the catalytic mechanism. Recognition of the lipoyl domain by its partner E1 appears to be a complex process and not attributable to any single determinant on the domain.  相似文献   

12.
A homodimer of pyruvate dehydrogenase kinase (PDHK) is an integral part of pyruvate dehydrogenase complex (PDC) to which it is anchored primarily through the inner lipoyl-bearing domains (L2) of transacetylase component. The catalytic cycle of PDHK and its translocation over the PDC surface is thought to be mediated by the "symmetric" and "asymmetric" modes, in which the PDHK dimer binds to two and one L2-domain(s), respectively. Whereas the structure of the symmetric PDHK/L2 complex was reported, the structural organization and functional role of the asymmetric complex remain obscure. Here, we report the crystal structure of the asymmetric PDHK3/L2 complex that reveals several functionally important features absent from the previous structures. First, the PDHK3 subunits have distinct conformations: one subunit exhibits "open" and the other "closed" configuration of the putative substrate-binding cleft. Second, access to the closed cleft is additionally restricted by local unwinding of the adjacent alpha-helix. Modeling indicates that the target peptide might gain access to the PDHK active center through the open but not through the closed cleft. Third, the ATP-binding loop in one PDHK3 subunit adopts an open conformation, implying that the nucleotide loading into the active site is mediated by the inactive "pre-insertion" binding mode. Altogether our data suggest that the asymmetric complex represents a physiological state in which binding of a single L2-domain activates one of the PDHK protomers while inactivating another. Thus, the L2-domains likely act not only as the structural anchors but also modulate the catalytic cycle of PDHK.  相似文献   

13.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

14.
The lipoyl domain (residues 1-85) of the lipoate-acetyltransferase polypeptide chain of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been subjected to detailed structural analysis by means of two-dimensional (2D) 1H-NMR spectroscopy at 400 MHz. Sequence-specific proton resonance assignments were made, but at this field strength not all of the side-chain protons could be assigned, especially from complex spin systems like those of leucine, proline and lysine residues. Measurement of short-range interproton distances identified two extensive regions of beta-sheet, each containing four anti-parallel peptide strands. The lipoyl-lysine residue (Lys42) is located in a tight turn at a corner of one sheet, the N-terminal and C-terminal residues of the domain are close together in two adjacent beta-strands in the other. The lipoylated and unlipoylated forms of the domain have almost identical spectra, indicating that there is little, if any, conformational change in the protein as a result of the post-translational modification.  相似文献   

15.
The EF-hand family of calcium-binding proteins regulates cellular signal transduction events via calcium-dependent interactions with target proteins. Here, we show that the COOH-terminal tail of the leech homolog of protein phosphatase 4 regulatory subunit 2 (PP4-R2) interacts with the small neuronal EF-hand calcium-binding protein, Calsensin, in a calcium-dependent manner. Using two-dimensional NMR spectroscopy and chemical shift perturbations we have identified and mapped the residues of Calsensin that form a binding surface for PP4-R2. We show that the binding groove is formed primarily of discontinuous hydrophobic residues located in helix 1, the hinge region, and helix 4 of the unicornate-type four helix structure of Calsensin. The findings suggest the possibility that calcium-dependent modulation of phosphatase complexes through interactions with small calcium-binding proteins may be a general mechanism for regulation of signal transduction pathways.  相似文献   

16.
Ca2+-dependent proteases isolated from chicken gizzard and bovine aortic smooth muscle were compared with respect to subunit autolysis and the role of autolysis in modulating enzyme activity. The protease isolated from chicken gizzard was a heterodimer consisting of 80,000- and 30,000-dalton subunits. The protease isolated under identical conditions from bovine aorta consisted of 75,000- and 30,000-dalton subunits. In the presence of Ca2+, both enzymes underwent autolysis of their 30,000-dalton subunits with conversion to an 18,000-dalton species. In addition, the 80,000-dalton subunit of the gizzard protease was degraded to a 76,000-dalton form. The Ca2+ concentrations required for autolysis of the 30,000-dalton subunits were different for the two enzymes (i.e. gizzard: K0.5 Ca2+ = 335 microM; aortic: K0.5 Ca2+ = 1,250 microM) although in both cases, stimulation of autolysis by Ca2+ exhibited positive cooperativity. When compared with respect to kinetics of substrate degradation, the native forms of the smooth muscle Ca2+-dependent proteases (gizzard, GIIa = 80,000/30,000-dalton heterodimer; bovine aortic, IIa = 75,000/30,000-dalton heterodimer) exhibited a lag phase in product appearance. On the other hand, the autolyzed forms (gizzard, GIIb = 76,000/18,000-dalton heterodimer; bovine aortic, IIb = 75,000/18,000-dalton heterodimer) exhibited linear rates of substrate degradation. These results were analyzed in terms of autolysis of the 30,000-dalton subunits as determined by the conversion of this subunit to its 18,000 dalton form. For both enzymes, the time course for the autolytic transition, 30,000----18,000 daltons, and Ca2+-dependence of the apparent rate constants for this transition were found to correlate well with the lag phase in enzymatic activity. No such correlation could be established for the 80,000----76,000 dalton autolytic transition of the high molecular mass subunit of the gizzard protease. Our results suggest that catalytic activity of the Ca2+-dependent proteases isolated from gizzard and bovine aortic smooth muscle requires autolysis of the 30,000-dalton subunit. The native or unautolyzed forms of these enzymes appear to be proenzymes that can be activated by autolysis.  相似文献   

17.
Pyruvate dehydrogenase phosphatase 1 (PDP1) catalyzes dephosphorylation of pyruvate dehydrogenase (E1) in the mammalian pyruvate dehydrogenase complex (PDC), whose activity is regulated by the phosphorylation-dephosphorylation cycle by the corresponding protein kinases (PDHKs) and phosphatases. The activity of PDP1 is greatly enhanced through Ca2+ -dependent binding of the catalytic subunit (PDP1c) to the L2 (inner lipoyl) domain of dihydrolipoyl acetyltransferase (E2), which is also integrated in PDC. Here, we report the crystal structure of the rat PDP1c at 1.8 A resolution. The structure reveals that PDP1 belongs to the PPM family of protein serine/threonine phosphatases, which, in spite of a low level of sequence identity, share the structural core consisting of the central beta-sandwich flanked on both sides by loops and alpha-helices. Consistent with the previous studies, two well-fixed magnesium ions are coordinated by five active site residues and five water molecules in the PDP1c catalytic center. Structural analysis indicates that, while the central portion of the PDP1c molecule is highly conserved among the members of the PPM protein family, a number of structural insertions and deletions located at the periphery of PDP1c likely define its functional specificity towards the PDC. One notable feature of PDP1c is a long insertion (residues 98-151) forming a unique hydrophobic pocket on the surface that likely accommodates the lipoyl moiety of the E2 domain in a fashion similar to that of PDHKs. The cavity, however, appears more open than in PDHK, suggesting that its closure may be required to achieve tight, specific binding of the lipoic acid. We propose a mechanism in which the closure of the lipoic acid binding site is triggered by the formation of the intermolecular (PDP1c/L2) Ca2+ binding site in a manner reminiscent of the Ca2+ -induced closure of the regulatory domain of troponin C.  相似文献   

18.
The catalytic subunit of pyruvate dehydrogenase phosphatase 1 (PDP1c) is a magnesium-dependent protein phosphatase that regulates the activity of mammalian pyruvate dehydrogenase complex. Based on the sequence analysis, it was hypothesized that PDP1c is related to the mammalian magnesium-dependent protein phosphatase type 1, with Asp54, Asp347, and Asp445 contributing to the binuclear metal-binding center, and Asn49 contributing to the phosphate-binding sites. In this study, we analyzed the functional significance of these amino acid residues using a site-directed mutagenesis. It was found that substitution of each of these residues had a significant impact on PDP1c activity toward the protein substrate. The activities of Asp54, Asp347, and Asp445 mutants were decreased more than 1000-fold. The activity of Asn49 mutant was 2.5-fold lower than the activity of wild-type PDP1c. The decrease in activity of Asp54 and Asp347 came about, most likely, as a result of impaired magnesium binding. Unexpectedly, it was found that the Asp445 mutant bound Mg(2+) ions similarly to the wild-type enzyme. Accordingly, the Asp445 mutant was found to be active with the artificial substrate p-nitrophenyl phosphate (pNPP). Asp54 and Asp347 mutants did not demonstrate any appreciable activity with pNPP. Together, these observations strongly suggest that Asn49, Asp54, and Asp347 are important for the catalysis of the phosphatase reaction, contributing to the phosphate- and metal-binding centers of PDP1c. In contrast, Asp445 is not required for catalysis. The exact role of Asp445 remains to be established, but indirect evidence suggests that it might be involved in the control of interactions between PDP1c and the protein substrate pyruvate dehydrogenase.  相似文献   

19.
S100 proteins are EF hand type Ca2+ binding proteins thought to function in stimulus-response coupling by binding to and thereby regulating cellular targets in a Ca2+-dependent manner. To isolate such target(s) of the S100P protein we devised an affinity chromatography approach that selects for S100 protein ligands requiring the biologically active S100 dimer for interaction. Hereby we identify ezrin, a membrane/F-actin cross-linking protein, as a dimer-specific S100P ligand. S100P-ezrin complex formation is Ca2+ dependent and most likely occurs within cells because both proteins colocalize at the plasma membrane after growth factor or Ca2+ ionophore stimulation. The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains. Interestingly, S100P binding unmasks the F-actin binding site, thereby at least partially activating the ezrin molecule. This identifies S100P as a novel activator of ezrin and indicates that activation of ezrin's cross-linking function can occur directly in response to Ca2+ transients.  相似文献   

20.
The inhibition by the regulatory domain and the interaction with calmodulin (CaM) vary among plasma membrane calcium pump (PMCA) isoforms. To explore these differences, the kinetics of CaM effects on PMCA4a were investigated and compared with those of PMCA4b. The maximal apparent rate constant for CaM activation of PMCA4a was almost twice that for PMCA4b, whereas the rates of activation for both isoforms showed similar dependence on Ca2+. The inactivation of PMCA4a by CaM removal was also faster than for PMCA4b, and Ca2+ showed a much smaller effect (2- versus 30-fold modification). The rate constants of the individual steps that determine the overall rates were obtained from stopped-flow experiments in which binding of TA-CaM was observed by changes in its fluorescence. TA-CaM binds to two conformations of PMCA4a, an "open" conformation with high activity, and a "closed" one with lower activity. Compared with PMCA4b (Penheiter, A. R., Bajzer, Z., Filoteo, A. G., Thorogate, R., T?r?k, K., and Caride, A. J. (2003) Biochemistry 41, 12115-12124), the model for PMCA4a predicts less inhibition in the closed form and a much faster equilibrium between the open and closed forms. Based on the available kinetic parameters, we determined the constants to fit the shape of a Ca2+ signal in PMCA4b-overexpressing Chinese hamster ovary cells. Using the constants for PMCA4a, and allowing small variations in parameters of other systems contributing to a Ca2+ signal, we then simulated the effect of PMCA4a on the shape of a Ca2+ signal in Chinese hamster ovary cells. The results reproduce the published data (Brini, M., Coletto, L., Pierobon, N., Kraev, N., Guerini, D., and Carafoli, E. (2003) J. Biol. Chem. 278, 24500-24508), and thereby demonstrate the importance of altered regulatory kinetics for the different functional properties of PMCA isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号