首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations.  相似文献   

2.
Underwater sound is directional and can convey important information about the surrounding environment or the animal emitting the sound. Therefore, sound is a major sensory channel for fishes and plays a key role in many life-history strategies. The effect of anthropogenic noise on aquatic life, which may be causing homogenisation or fragmentation of biologically important signals underwater is of growing concern. In this review we discuss the role sound plays in the ecology of fishes, basic anatomical and physiological adaptations for sound reception and production, the effects of anthropogenic noise and how fishes may be coping to changes in their environment, to put the ecology of fish hearing into the context of the modern underwater soundscape.  相似文献   

3.
The considerable extent of construction and operation of marine renewable energy developments (MRED) within U.K. and adjacent waters will lead, among other things, to the emission of electromagnetic fields (EMF) and subsea sounds into the marine environment. Migratory fishes that respond to natural environmental cues, such as the Earth's geomagnetic field or underwater sounds, move through the same waters that the MRED occupy, thereby raising the question of whether there are any effects of MRED on migratory fishes. Diadromous species, such as the Salmonidae and Anguillidae, which undertake large-scale migrations through coastal and offshore waters, are already significantly affected by other human activities leading to national and international conservation efforts to manage any existing threats and to minimize future concerns, including the potential effect of MRED. Here, the current state of knowledge with regard to the potential for diadromous fishes of U.K. conservation importance to be affected by MRED is reviewed. The information on which to base the review was found to be limited with respect to all aspects of these fishes' migratory behaviour and activity, especially with regards to MRED deployment, making it difficult to establish cause and effect relationships. The main findings, however, were that diadromous species can use the Earth's magnetic field for orientation and direction finding during migrations. Juveniles of anadromous brown trout (sea trout) Salmo trutta and close relatives of S. trutta respond to both the Earth's magnetic field and artificial magnetic fields. Current knowledge suggests that EMFs from subsea cables may interact with migrating Anguilla sp. (and possibly other diadromous fishes) if their movement routes take them over the cables, particularly in shallow water (<20 m). The only known effect is a temporary change in swimming direction. Whether this will represent a biologically significant effect, for example delayed migration, cannot yet be determined. Diadromous fishes are likely to encounter EMFs from subsea cables either during the adult movement phases of life or their early life stages during migration within shallow, coastal waters adjacent to natal rivers. The underwater sound from MRED devices has not been fully characterized to determine its acoustic properties and propagation through the coastal waters. MRED that require pile driving during construction appear to be the most relevant to consider. In the absence of a clear understanding of their response to underwater sound, the specific effects on migratory species of conservation concern remain very difficult to determine in relation to MRED. Based on the studies reviewed, it is suggested that fishes that receive high intensity sound in close proximity to construction may be physiologically affected to some degree, whereas those at farther distances, potentially up to several km, may exhibit behaviour responses; the effect of which is unknown and will be dependent on the properties of the received sound and receptor characteristics and condition. Whether there are behavioural effects on the fishes during operation is unknown but any change to the environment and subsequent response by the fishes would need to be considered over the lifetime of the MRED. It is not yet possible to determine if effects relating to sound exposure are biologically significant. The current assumptions of limited effects are built on an incomplete understanding of how the species move around their environment and interact with natural and anthropogenic EMFs and subsea sound. A number of important knowledge gaps exist, principally whether migratory fish species on the whole respond to the EMF and the sound associated with MRED. Future research should address the principal gaps before assuming that any effect on diadromous species results in a biological effect.  相似文献   

4.
Impact assessments of offshore wind farm installations and operations on the marine fauna are performed in many countries. Yet, only limited quantitative data on the physiological impact of impulsive sounds on (juvenile) fishes during pile driving of offshore wind farm foundations are available. Our current knowledge on fish injury and mortality due to pile driving is mainly based on laboratory experiments, in which high-intensity pile driving sounds are generated inside acoustic chambers. To validate these lab results, an in situ field experiment was carried out on board of a pile driving vessel. Juvenile European sea bass (Dicentrarchus labrax) of 68 and 115 days post hatching were exposed to pile-driving sounds as close as 45 m from the actual pile driving activity. Fish were exposed to strikes with a sound exposure level between 181 and 188 dB re 1 µPa2.s. The number of strikes ranged from 1739 to 3067, resulting in a cumulative sound exposure level between 215 and 222 dB re 1 µPa2.s. Control treatments consisted of fish not exposed to pile driving sounds. No differences in immediate mortality were found between exposed and control fish groups. Also no differences were noted in the delayed mortality up to 14 days after exposure between both groups. Our in situ experiments largely confirm the mortality results of the lab experiments found in other studies.  相似文献   

5.
The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SEL(ss), SEL(cum) respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 μPa(2)?s SEL(ss) yielding a SEL(cum) of 210 dB re 1 μPa(2)?s, and for 960 strikes by 180 dB re 1 μPa(2)?s SEL(ss) yielding a SEL(cum) of 210 dB re 1 μPa(2)?s. These metrics define thresholds for onset of injury in juvenile Chinook salmon.  相似文献   

6.
Marine ambient sound levels have risen due to noisy human activities, such as shipping, fishing, seismic surveys and piling for windfarms. Marine mammals and fishes are two prominent taxonomic groups that are exposed to this noise pollution, which may experience detrimental effects at the population level. Acoustic effects on individual behaviour such as deterrence, disturbance, distraction and masking of biologically relevant sounds, can be translated energetically to changes in vital rates (growth, maturation, reproduction and survival) in a population consequences of acoustic disturbance (PCAD) approach. However, we typically neglect spatial variation in species distributions and noise pollution, while abiotic factors like temperature, bathymetry and currents, as well as habitat quality in terms of feeding or hiding opportunities, will also have a geographically variable impact on potential consequences. We here address the conceptual integration of agent based models (ABM) into the PCAD framework, as a suitable theoretical tool with high potential for the exploration of these spatial factors and their modifying role in noise impact assessment studies. We review five ABM case studies, including investigations into: 1) effects of movement strategy on the impact of explosions in harbour porpoise; 2) effects of disturbance sensitivity on pile driving impact on migrating cod; 3) impact of seismic survey sounds on Atlantic mackerel distribution and movement; 4) population-level impact of mitigation of harbour porpoise bycatch with pingers; and 5) population effects of alternative windfarm construction scenarios in harbour porpoise. We discuss similarities and differences among these studies in sound and species mapping approaches and we evaluate model realism and pattern validation. We believe that ABMs are a valuable tool for integrating spatial information into ecological impact studies that investigate acoustic disturbance, for any type of sound source, and for both marine mammals and fish.  相似文献   

7.
While acoustic communication has been described in adults of various fish species, our knowledge about the ontogeny of fish sound production is limited. In adults, sound signals are known to be involved during aggressive interactions. However, aggressive behaviour may appear early in the life of fishes due to the possible competition for food and space. If acoustic signals are used to send information to competitors, sounds are likely to play a role during interactions between juvenile fish as well. The apparition and evolution of sound production were monitored in a group of juveniles of the cichlid fish Metriaclima zebra from hatching to 4months of age. In addition, the link between vocalizations and agonistic behaviour was studied during dyadic interactions at three different ages. Sounds production appeared to be present early in the development of this fish and increased along with the number of aggressive behaviours. Recorded sounds consisted, in juveniles, in isolated pulses showing a decrease in frequency and duration as the fish grew. In adults, sounds became bursts of pulses but the transition from isolated to repetitive pulses was not observed. These results are compared to the existing literature on sound production ontogeny in fishes.  相似文献   

8.
Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications documented an effect of climate change on inland fishes, while 116 publications projected inland fishes’ response to future climate change. Documented and projected impacts of climate change varied, but several trends emerged including differences between documented and projected impacts of climate change on salmonid abundance (P = 0.0002). Salmonid abundance decreased in 89.5% of documented effects compared to 35.7% of projected effects, where variable effects were more commonly reported (64.3%). Studies focused on responses of salmonids (61% of total) to climate change in North America and Europe, highlighting major gaps in the literature for taxonomic groups and geographic focus. Elucidating global patterns and identifying knowledge gaps of climate change effects on inland fishes will help managers better anticipate local changes in fish populations and assemblages, resulting in better development of management plans, particularly in systems with little information on climate change effects on fish.  相似文献   

9.
The problems associated with the detection of sounds and other mechanical disturbances in the aquatic environment differ greatly from those associated with airborne sounds. The differences are primarily due to the incompressibility of water and the corresponding increase in importance of the acoustic near field. The near field, or hydrodynamic field, is characterized by steep spatial gradients in pressure, and detection of the accelerations associated with these gradients is performed by both the inner ear and the lateral line systems of fishes. Acceleration-sensitive otolithic organs are present in all fishes and provide these animals with a form of inertial audition. The detection of pressure gradients, by both the lateral line and inner ear, is the taxonomically most widespread mechanism of sound-source detection amongst vertebrates, and is thus the most likely primitive mode of detecting sound sources. Surprisingly, little is known about the capabilities of either the lateral line or the otolithic endorgan in the detection of vibratory dipole sources. Theoretical considerations for the overlapping roles of the inner ear and lateral line systems in midwater predict that the lateral line will operate over a shorter distance range than the inner ear, although with a much greater spatial resolution. Our empirical results of dipole detection by mottled sculpin, a benthic fish, do not agree with theoretical predictions based on midwater fishes, in that the distance ranges of the two systems appear to be approximately equal. This is almost certainly as a result of physical coupling between the fishes and the substrate. Thus, rather than having a greater active range, the inner ear appears to have a reduced distance range in benthic fishes, and the lateral line distance range may be concomitantly extended.  相似文献   

10.

Background

Sound production is widespread among fishes and accompanies many social interactions. The literature reports twenty-nine cichlid species known to produce sounds during aggressive and courtship displays, but the precise range in behavioural contexts is unclear. This study aims to describe the various Oreochromis niloticus behaviours that are associated with sound production in order to delimit the role of sound during different activities, including agonistic behaviours, pit activities, and reproduction and parental care by males and females of the species.

Methodology/Principal Findings

Sounds mostly occur during the day. The sounds recorded during this study accompany previously known behaviours, and no particular behaviour is systematically associated with sound production. Males and females make sounds during territorial defence but not during courtship and mating. Sounds support visual behaviours but are not used alone. During agonistic interactions, a calling Oreochromis niloticus does not bite after producing sounds, and more sounds are produced in defence of territory than for dominating individuals. Females produce sounds to defend eggs but not larvae.

Conclusion/Significance

Sounds are produced to reinforce visual behaviours. Moreover, comparisons with O. mossambicus indicate two sister species can differ in their use of sound, their acoustic characteristics, and the function of sound production. These findings support the role of sounds in differentiating species and promoting speciation. They also make clear that the association of sounds with specific life-cycle roles cannot be generalized to the entire taxa.  相似文献   

11.
No information on the inheritance of the ability to produce sounds exists for fishes. In birds, which usually provide extensive post-hatching parental care, acoustic signals are learned in some species but are innate in others. Almost no fishes provide extensive post-hatching parental care and, consequently, the offspring have little opportunity to hear and learn sounds produced by the parents (usually the male in fishes); they may, however, be exposed to acoustic signals of conspecifics in the same habitat. We used a cyprinid, Codoma ornata, to test whether sound production is learned from the parents or whether it is innate. Fertilized eggs of this species were raised in isolation from adults. Upon maturity, these fish were tested for sound production in aggressive and reproductive contexts. Fish which had no contact with adults, and therefore no opportunity to hear the acoustic signals of their species, produced sounds that were similar to those produced by their parents, and they produced these in the same contexts. Significant differences were observed in dominant frequency for one context, with the smaller F1 fish having signals of higher frequency than parental fish. Since no opportunity for learning existed, this provided evidence that the ability to produce sounds is innate in this minnow species.  相似文献   

12.
Anthropogenic sound is increasingly considered a major environmental issue, but its effects are relatively unstudied. Organisms may be directly affected by anthropogenic sound in many ways, including interference with their ability to detect mates, predators, or food, and disturbances that directly affect one organism may in turn have indirect effects on others. Thus, to fully appreciate the net effect of anthropogenic sound, it may be important to consider both direct and indirect effects. We report here on a series of experiments to test the hypothesis that anthropogenic sound can generate cascading indirect effects within a community. We used a study system of lady beetles, soybean aphids, and soybean plants, which are a useful model for studying the direct and indirect effects of global change on food webs. For sound treatments, we used several types of music, as well as a mix of urban sounds (e.g., sirens, vehicles, and construction equipment), each at volumes comparable to a busy city street or farm tractor. In 18‐hr feeding trials, rock music and urban sounds caused lady beetles to consume fewer aphids, but other types of music had no effect even at the same volume. We then tested the effect of rock music on the strength of trophic cascades in a 2‐week experiment in plant growth chambers. When exposed to music by AC/DC, who articulated the null hypothesis that “rock and roll ain't noise pollution” in a song of the same name, lady beetles were less effective predators, resulting in higher aphid density and reduced final plant biomass relative to control (no music) treatments. While it is unclear what characteristics of sound generate these effects, our results reject the AC/DC hypothesis and demonstrate that altered interspecific interactions can transmit the indirect effects of anthropogenic noise through a community.  相似文献   

13.
A report on the auditory capabilities and their associated functions of elasmobranch fishes along with a brief review of the physics of underwater sound as it relates to hearing by fishes is provided. The inner ears of elasmobranchs possess structures that are no different from other fishes, except for an enlarged macula neglecta, which is unique among fishes. Hearing abilities among sharks (the only elasmobranchs examined) have demonstrated highest sensitivity to low frequency sound (40Hz to approximately 800Hz), which is sensed solely through the particle-motion component of an acoustical field. Free-ranging sharks are attracted to sounds possessing specific characteristics: irregularly pulsed, broad-band (most attractive frequencies: below 80Hz), and transmitted without a sudden increase in intensity. Such sounds are reminiscent of those produced by struggling prey. A sound, even an attractive one, can also result in immediate withdrawal by sharks from a source, if its intensity suddenly increases 20dB [10 times] or more above a previous transmission. Present evidence also shows that the lateral line system does not respond to normal acoustical stimuli. Morphological and physiological evidence suggest that the maculae neglecta possess acoustical relevance and may explain directionality of response despite physical principles that provide still other hypotheses for acoustical directionality. Brain centers controlling acoustical response, particularly among sharks, must be explored in the near future with careful consideration of the habits of subjects based on indications of species-differences regarding the importance of acoustical stimuli to their activities. Numerous facts and ideas about the acoustical biology of elasmobranch fishes make certain that future research will be most rewarding.  相似文献   

14.
褐菖鲉的听觉阈值研究   总被引:1,自引:0,他引:1  
利用听觉诱发电位记录技术研究了褐菖鲉(Sebasticus marmoratus)的听觉阈值。通过采用听觉生理系统记录和分析了8尾褐菖鲉对频率范围在100—1000 Hz的7种不同频率的声音刺激的诱发电位反应。结果表明, 褐菖鲉的听觉阈值在整体上随着频率增加而增加, 对100—300 Hz的低频声音信号敏感, 最敏感频率为150 Hz, 对应的听觉阈值为70 dB re 1 μPa。褐菖鲉的听觉敏感区间与其发声频率具有较高的匹配性, 表明其声讯交流的重要性。同时, 人为低频噪声可能对其声讯交流造成影响。  相似文献   

15.
The noise filter hypothesis predicts that species using higher sound frequencies should be more tolerant of noise pollution, because anthropogenic noise is more intense at low frequencies. Recent work analysed continental‐scale data on anthropogenic noise across the USA and found that passerine species inhabiting more noise‐polluted areas do not have higher peak song frequency but have more complex songs. However, this metric of song complexity is of ambiguous interpretation, because it can indicate either diverse syllables or a larger frequency bandwidth. In the latter case, the finding would support the noise filter hypothesis, because larger frequency bandwidths mean that more sound energy spreads to frequencies that are less masked by anthropogenic noise. We reanalysed how passerine song predicts exposure to noise using a more thorough dataset of acoustic song measurements, and showed that it is large frequency bandwidths, rather than diverse syllables, that predict the exposure of species to noise pollution. Given that larger bandwidths often encompass higher maximum frequencies, which are less masked by anthropogenic noise, our result suggests that tolerance to noise pollution might depend mostly on having the high‐frequency parts of song little masked by noise, thus preventing acoustic communication from going entirely unnoticed at long distances.  相似文献   

16.
《Global Change Biology》2018,24(7):3105-3116
The aquatic environment is increasingly bombarded by a wide variety of noise pollutants whose range and intensity are increasing with each passing decade. Yet, little is known about how aquatic noise affects marine communities. To determine the implications that changes to the soundscape may have on fishes, a meta‐analysis was conducted focusing on the ramifications of noise on fish behavior and physiology. Our meta‐analysis identified 42 studies that produced 2,354 data points, which in turn indicated that anthropogenic noise negatively affects fish behavior and physiology. The most predominate responses occurred within foraging ability, predation risk, and reproductive success. Additionally, anthropogenic noise was shown to increase the hearing thresholds and cortisol levels of numerous species while tones, biological, and environmental noise were most likely to affect complex movements and swimming abilities. These findings suggest that the majority of fish species are sensitive to changes in the aquatic soundscape, and depending on the noise source, species responses may have extreme and negative fitness consequences. As such, this global synthesis should serve as a warning of the potentially dire consequences facing marine ecosystems if alterations to aquatic soundscapes continue on their current trajectory.  相似文献   

17.
This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.  相似文献   

18.
Maruska KP  Ung US  Fernald RD 《PloS one》2012,7(5):e37612
Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2-5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the importance of examining non-visual sensory modalities as potential substrates for sexual selection contributing to the incredible phenotypic diversity of African cichlid fishes.  相似文献   

19.
20.
Sounds and sound production in fishes   总被引:3,自引:0,他引:3  
The main information on the sounds and sound production in fishes is reviewed. The present systems of sound classification and specialized sound production in fishes with different taxonomic positions and ecology are described. The anatomy of sound generating organs is analyzed, and the mechanisms of production of different types of sounds (stridulation, drumming, cavitation, and percussion, as well as hydrodynamic, pneumatic, stringed, and respiratory sounds) are discussed. A brief characterization of the acoustic parameters of different sound types is given. Recent data on the anatomy and morphology of the sonic muscles (including their innervation, physiology, sexual dimorphism, and seasonal changes) are reviewed. The dynamics of the development of sound generating organs are described, and their capacity for sound production in the ontogeny of fishes is followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号