首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhou XB  Chen C  Li ZC  Zou XY 《Amino acids》2008,35(2):383-388
Apoptosis proteins play an important role in the development and homeostasis of an organism. The accurate prediction of subcellular location for apoptosis proteins is very helpful for understanding the mechanism of apoptosis and their biological functions. However, most of the existing predictive methods are designed by utilizing a single classifier, which would limit the further improvement of their performances. In this paper, a novel predictive method, which is essentially a multi-classifier system, has been proposed by combing a dual-layer support vector machine (SVM) with multiple compositions including amino acid composition (AAC), dipeptide composition (DPC) and amphiphilic pseudo amino acid composition (Am-Pse-AAC). As a demonstration, the predictive performance of our method was evaluated on two datasets of apoptosis proteins, involving the standard dataset ZD98 generated by Zhou and Doctor, and a larger dataset ZW225 generated by Zhang et al. With the jackknife test, the overall accuracies of our method on the two datasets reach 94.90% and 88.44%, respectively. The promising results indicate that our method can be a complementary tool for the prediction of subcellular location.  相似文献   

2.
Gram-negative bacteria have five major subcellular localization sites: the cytoplasm, the periplasm, the inner membrane, the outer membrane, and the extracellular space. The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. We present an approach to predict subcellular localization for Gram-negative bacteria. This method uses the support vector machines trained by multiple feature vectors based on n-peptide compositions. For a standard data set comprising 1443 proteins, the overall prediction accuracy reaches 89%, which, to the best of our knowledge, is the highest prediction rate ever reported. Our prediction is 14% higher than that of the recently developed multimodular PSORT-B. Because of its simplicity, this approach can be easily extended to other organisms and should be a useful tool for the high-throughput and large-scale analysis of proteomic and genomic data.  相似文献   

3.
Predicting allergenic proteins using wavelet transform   总被引:2,自引:0,他引:2  
MOTIVATION: With many transgenic proteins introduced today, the ability to predict their potential allergenicity has become an important issue. Previous studies were based on either sequence similarity or the protein motifs identified from known allergen databases. The similarity-based approaches, although being able to produce high recalls, usually have low prediction precisions. Previous motif-based approaches have been shown to be able to improve the precisions on cross-validation experiments. In this study, a system that combines the advantages of similarity-based and motif-based prediction is described. RESULTS: The new prediction system uses a clustering algorithm that groups the known allergenic proteins into clusters. Proteins within each cluster are assumed to carry one or more common motifs. After a multiple sequence alignment, proteins in each cluster go through a wavelet analysis program whereby conserved motifs will be identified. A hidden Markov model (HMM) profile will then be prepared for each identified motif. The allergens that do not appear to carry detectable allergen motifs will be saved in a small database. The allergenicity of an unknown protein may be predicted by comparing it against the HMM profiles, and, if no matching profiles are found, against the small allergen database by BLASTP. Over 70% of recall and over 90% of precision were observed using cross-validation experiments. Using the entire Swiss-Prot as the query, we predicted about 2000 potential allergens. AVAILABILITY: The software is available upon request from the authors.  相似文献   

4.
研究表明,许多神经退行性疾病都与蛋白质在高尔基体中的定位有关,因此,正确识别亚高尔基体蛋白质对相关疾病药物的研制有一定帮助,本文建立了两类亚高尔基体蛋白质数据集,提取了氨基酸组分信息、联合三联体信息、平均化学位移、基因本体注释信息等特征信息,利用支持向量机算法进行预测,基于5-折交叉检验下总体预测成功率为87.43%。  相似文献   

5.
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.  相似文献   

6.
7.
许嘉 《生物信息学》2013,11(4):297-299
抗冻蛋白是一类具有提高生物抗冻能力的蛋白质。抗冻蛋白能够特异性的与冰晶相结合,进而阻止体液内冰核的形成与生长。因此,对抗冻蛋白的生物信息学研究对生物工程发展。提高作物抗冻性有重要的推动作用。本文采用由400条抗冻蛋白序列和400条非抗冻蛋白序列构成数据集,以伪氨基酸组分为特征,利用支持向量机分类算法预测抗冻蛋白,对训练集预测精度达到91.3%,对测试集预测精度达到78.8%。该结果证明伪氨基酸组分能够很好的反映抗冻蛋白特性,并能够用于预测抗冻蛋白。  相似文献   

8.
Prediction of the subcellular location of apoptosis proteins   总被引:4,自引:0,他引:4  
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. Based on the concept that the subcellular location of an apoptosis protein is mainly determined by its amino acid sequence, a new algorithm for prediction of the subcellular location of an apoptosis protein is proposed. By using of a distinctive set of information parameters derived from the primary sequence of 317 apoptosis proteins, the increment of diversity (ID), the sole prediction parameter, is calculated. The higher predictive success rates than the previous other algorithms is obtained by the jackknife tests using the expanded dataset. Our prediction results show that the local compositions of twin amino acids and hydropathy distribution are very useful to predict subcellular location of protein.  相似文献   

9.
Wang Y  Xue Z  Xu J 《Proteins》2006,65(1):49-54
We have developed a novel method named AlphaTurn to predict alpha-turns in proteins based on the support vector machine (SVM). The prediction was done on a data set of 469 nonhomologous proteins containing 967 alpha-turns. A great improvement in prediction performance was achieved by using multiple sequence alignment generated by PSI-BLAST as input instead of the single amino acid sequence. The introduction of secondary structure information predicted by PSIPRED also improved the prediction performance. Moreover, we handled the very uneven data set by combining the cost factor j with the "state-shifting" rule. This further promoted the prediction quality of our method. The final SVM model yielded a Matthews correlation coefficient (MCC) of 0.25 by a 10-fold cross-validation. To our knowledge, this MCC value is the highest obtained so far for predicting alpha-turns. An online Web server based on this method has been developed and can be freely accessed at http://bmc.hust.edu.cn/bioinformatics/ or http://210.42.106.80/.  相似文献   

10.
As one important post-translational modification of prokaryotic proteins, pupylation plays a key role in regulating various biological processes. The accurate identification of pupylation sites is crucial for understanding the underlying mechanisms of pupylation. Although several computational methods have been developed for the identification of pupylation sites, the prediction accuracy of them is still unsatisfactory. Here, a novel bioinformatics tool named IMP–PUP is proposed to improve the prediction of pupylation sites. IMP–PUP is constructed on the composition of k-spaced amino acid pairs and trained with a modified semi-supervised self-training support vector machine (SVM) algorithm. The proposed algorithm iteratively trains a series of support vector machine classifiers on both annotated and non-annotated pupylated proteins. Computational results show that IMP–PUP achieves the area under receiver operating characteristic curves of 0.91, 0.73, and 0.75 on our training set, Tung's testing set, and our testing set, respectively, which are better than those of the different error costs SVM algorithm and the original self-training SVM algorithm. Independent tests also show that IMP–PUP significantly outperforms three other existing pupylation site predictors: GPS–PUP, iPUP, and pbPUP. Therefore, IMP–PUP can be a useful tool for accurate prediction of pupylation sites. A MATLAB software package for IMP–PUP is available at https://juzhe1120.github.io/.  相似文献   

11.
Bikadi Z  Hazai I  Malik D  Jemnitz K  Veres Z  Hari P  Ni Z  Loo TW  Clarke DM  Hazai E  Mao Q 《PloS one》2011,6(10):e25815
Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus, identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80% on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove valuable for both rational drug design and screening.  相似文献   

12.
The function of the protein is closely correlated with its subcellular localization. Probing into the mechanism of protein sorting and predicting protein subcellular location can provide important clues or insights for understanding the function of proteins. In this paper, we introduce a new PseAAC approach to encode the protein sequence based on the physicochemical properties of amino acid residues. Each of the protein samples was defined as a 146D (dimensional) vector including the 20 amino acid composition components and 126 adjacent triune residues contents. To evaluate the effectiveness of this encoding scheme, we did jackknife tests on three datasets using the support vector machine algorithm. The total prediction accuracies are 84.9%, 91.2%, and 92.6%, respectively. The satisfactory results indicate that our method could be a useful tool in the area of bioinformatics and proteomics.  相似文献   

13.
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. It is crucial to develop powerful tools to predict apoptosis protein locations for rapidly increasing gap between the number of known structural proteins and the number of known sequences in protein databank. In this study, amino acids pair compositions with different spaces are used to construct feature sets for representing sample of protein feature selection approach based on binary particle swarm optimization, which is applied to extract effective feature. Ensemble classifier is used as prediction engine, of which the basic classifier is the fuzzy K-nearest neighbor. Each basic classifier is trained with different feature sets. Two datasets often used in prior works are selected to validate the performance of proposed approach. The results obtained by jackknife test are quite encouraging, indicating that the proposed method might become a potentially useful tool for subcellular location of apoptosis protein, or at least can play a complimentary role to the existing methods in the relevant areas. The supplement information and software written in Matlab are available by contacting the corresponding author.  相似文献   

14.
Proteins are generally classified into the following 12 subcellular locations: 1) chloroplast, 2) cytoplasm, 3) cytoskeleton, 4) endoplasmic reticulum, 5) extracellular, 6) Golgi apparatus, 7) lysosome, 8) mitochondria, 9) nucleus, 10) peroxisome, 11) plasma membrane, and 12) vacuole. Because the function of a protein is closely correlated with its subcellular location, with the rapid increase in new protein sequences entering into databanks, it is vitally important for both basic research and pharmaceutical industry to establish a high throughput tool for predicting protein subcellular location. In this paper, a new concept, the so-called "functional domain composition" is introduced. Based on the novel concept, the representation for a protein can be defined as a vector in a high-dimensional space, where each of the clustered functional domains derived from the protein universe serves as a vector base. With such a novel representation for a protein, the support vector machine (SVM) algorithm is introduced for predicting protein subcellular location. High success rates are obtained by the self-consistency test, jackknife test, and independent dataset test, respectively. The current approach not only can play an important complementary role to the powerful covariant discriminant algorithm based on the pseudo amino acid composition representation (Chou, K. C. (2001) Proteins Struct. Funct. Genet. 43, 246-255; Correction (2001) Proteins Struct. Funct. Genet. 44, 60), but also may greatly stimulate the development of this area.  相似文献   

15.

Background

Essential proteins play an indispensable role in the cellular survival and development. There have been a series of biological experimental methods for finding essential proteins; however they are time-consuming, expensive and inefficient. In order to overcome the shortcomings of biological experimental methods, many computational methods have been proposed to predict essential proteins. The computational methods can be roughly divided into two categories, the topology-based methods and the sequence-based ones. The former use the topological features of protein-protein interaction (PPI) networks while the latter use the sequence features of proteins to predict essential proteins. Nevertheless, it is still challenging to improve the prediction accuracy of the computational methods.

Results

Comparing with nonessential proteins, essential proteins appear more frequently in certain subcellular locations and their evolution more conservative. By integrating the information of subcellular localization, orthologous proteins and PPI networks, we propose a novel essential protein prediction method, named SON, in this study. The experimental results on S.cerevisiae data show that the prediction accuracy of SON clearly exceeds that of nine competing methods: DC, BC, IC, CC, SC, EC, NC, PeC and ION.

Conclusions

We demonstrate that, by integrating the information of subcellular localization, orthologous proteins with PPI networks, the accuracy of predicting essential proteins can be improved. Our proposed method SON is effective for predicting essential proteins.
  相似文献   

16.

Background  

The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships.  相似文献   

17.
Identifying the subcellular localization of proteins is particularly helpful in the functional annotation of gene products. In this study, we use Machine Learning and Exploratory Data Analysis (EDA) techniques to examine and characterize amino acid sequences of human proteins localized in nine cellular compartments. A dataset of 3,749 protein sequences representing human proteins was extracted from the SWISS-PROT database. Feature vectors were created to capture specific amino acid sequence characteristics. Relative to a Support Vector Machine, a Multi-layer Perceptron, and a Naive Bayes classifier, the C4.5 Decision Tree algorithm was the most consistent performer across all nine compartments in reliably predicting the subcellular localization of proteins based on their amino acid sequences (average Precision=0.88; average Sensitivity=0.86). Furthermore, EDA graphics characterized essential features of proteins in each compartment. As examples, proteins localized to the plasma membrane had higher proportions of hydrophobic amino acids; cytoplasmic proteins had higher proportions of neutral amino acids; and mitochondrial proteins had higher proportions of neutral amino acids and lower proportions of polar amino acids. These data showed that the C4.5 classifier and EDA tools can be effective for characterizing and predicting the subcellular localization of human proteins based on their amino acid sequences.  相似文献   

18.
A neural network-based tool, TargetP, for large-scale subcellular location prediction of newly identified proteins has been developed. Using N-terminal sequence information only, it discriminates between proteins destined for the mitochondrion, the chloroplast, the secretory pathway, and "other" localizations with a success rate of 85% (plant) or 90% (non-plant) on redundancy-reduced test sets. From a TargetP analysis of the recently sequenced Arabidopsis thaliana chromosomes 2 and 4 and the Ensembl Homo sapiens protein set, we estimate that 10% of all plant proteins are mitochondrial and 14% chloroplastic, and that the abundance of secretory proteins, in both Arabidopsis and Homo, is around 10%. TargetP also predicts cleavage sites with levels of correctly predicted sites ranging from approximately 40% to 50% (chloroplastic and mitochondrial presequences) to above 70% (secretory signal peptides). TargetP is available as a web-server at http://www.cbs.dtu.dk/services/TargetP/.  相似文献   

19.
Application of discrete wavelet transform to the temporal location of the frequency structure of the cardiac rhythm is considered. A method for analysis of tachograms (TGs) consisting of signal preparation, discrete wavelet transform, and a variant of estimation of the relative contributions of the rhythm frequency components is suggested. The use of the method is exemplified by analysis of a TG containing recordings of transitional processes, including the moments of a fixed respiration rate test, Valsalva test, and orthostatic test. The detected characteristics of changes in the frequency components are demonstrated by comparing them with the changes in the integral index of the total regulatory effect on the sinus node, which forms the response to these functional tests.  相似文献   

20.
The enzymatic attributes of newly found protein sequences are usually determined either by biochemical analysis of eukaryotic and prokaryotic genomes or by microarray chips. These experimental methods are both time-consuming and costly. With the explosion of protein sequences registered in the databanks, it is highly desirable to develop an automated method to identify whether a given new sequence belongs to enzyme or non-enzyme. The discrete wavelet transform (DWT) and support vector machine (SVM) have been used in this study for distinguishing enzyme structures from non-enzymes. The networks have been trained and tested on two datasets of proteins with different wavelet basis functions, decomposition scales and hydrophobicity data types. Maximum accuracy has been obtained using SVM with a wavelet function of Bior2.4, a decomposition scale j=5, and Kyte-Doolittle hydrophobicity scales. The results obtained by the self-consistency test, jackknife test and independent dataset test are encouraging, which indicates that the proposed method can be employed as a useful assistant technique for distinguishing enzymes from non-enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号